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DIGITAL HEALTH TWIN

Researcher/Scientist

PROBLEM

• Researchers/Scientists need to access to patient data
• Patient data is distributed and cannot be 
accumulated
• Patient data is private

• Regulatory/Policy requirements
• Federated learning solves some issues

• Privacy is still not guaranteed

• Collaborative nature of federated learning is 

susceptible to security risks 
• Federated learning has a performance cost

• Non-IID distribution leads to loss of 
performance/fairness

SOLUTION

• Using synthetic data instead of real data
• Train private generative models – e.g. VAEs, GANs, 

Normalizing Flows, etc. - on real data

• Validate the model and its results

• Generate private synthetic data to replace the real data
• Benefits over using real data

• Guaranteed privacy

• Avoiding the complexity of distributed/federated training

• Avoiding security risks of federated training

• Ability to manipulate and augment the synthetic data and 
fix some of its issues

• Potential probability evaluation of the samples leading to 
uncertainty estimation, anomaly detection, etc.

ADVANCING TABULAR SYNTHETIC DATA GENERATION FOR CRITICAL DOMAINS

Synthesizing Heavy and Mixed Tail Data

• Real world data have a mix of heavy and light 
tail behavior

• The generative model needs to capture the 
tail behavior of the real data accurately

• It is necessary for correctly generate rare 
cases without generating non-existent 
anomalous data

• Most of the available literature do not 
address this issue directly

• Our solution: make Normalizing Flows tail 
adaptive without any pre-assumptions about 
the tail behavior of the target density

• Results:
• Amiri, Saba, et al. "Compressive differentially private federated learning 

through universal vector quantization." AAAI Workshop on Privacy -Preserving 
Artificial Intelligence. 2021.

• Amiri, Saba, et al. "On the impact of non-IID data on the performance  and 
fairness of differentially private federated learning." 2022 52nd  Annual 
IEEE/IFIP International Conference on Dependable Systems and  Networks 
Workshops (DSN-W). IEEE, 2022.

• Amiri, Saba, et al. "Generating Heavy-Tailed Synthetic Data with Normalizing 
Flows." The 5th Workshop on Tractable Probabilistic Modeling. 2022.

• Amiri, Saba, et al. “ Practical Synthesis of Mixed-Tailed Data with Normalizing 
Flows”, working paper

Synthesizing Semantically Correct Data

• Probabilistic generative models for 
synthesizing data

• These models could potentially generate 
samples that are in the support of their 
estimated distribution but are semantically 
incorrect, e.g. a male patient with pregnancy 
history

• The semantic rules are mostly either 
undocumented or unidentified

• A way to model the semantic boundaries of 
the variables in an unsupervised manner

• Use extracted boundaries to guide the 
generative model during the 
training/inference phase

• Our solution: add an independent validator 
component to the data synthesizer to model 
and enforce semantic rules

• Results:
• Amiri, Saba, et al. "Differential Privacy vs Detecting Copyright Infringement: 

A Case Study with Normalizing Flows.", Gen Law 23, ICML

• Amiri, Saba, et al. “Synthesizing Tabular Data with Regularized Latent 
Representations for Improved Semantic Integrity”, working paper

Synthesizing Private Data

• Models trained on real data are vulnerable 
to adversarial attacks such as membership 
inference, could potentially leak training 
data

• Synthetic data could potentially let an 
adversary gain information about the 
training set and/or reconstruct it

• We need privacy preserving generative 
models with provable privacy guarantees

• We aim to make the generative models 
differentially private

• Differential privacy has a performance 
and/or fairness cost

• Our solution: Noiseless differentially 
private normalizing flows

• Results:
• Amiri, Saba, et al. “ Noise-less differentially private normalizing 
flows for tabular data synthesis”, working paper


