

Multi-Party Computation for healthcare

Freya de Mink & Aldo Gunsing, Roseman Labs

Collaboration on sensitive data in challenging

Legal complexity

- GDPR
- Anti-trust laws

Technical complexity

- Security
- Confidentiality
- Standardization

Organizational complexity

- Governance, contracts
- Trusted third party
- Costly and time consuming

Roseman Labs helps organizations to collaborate on sensitive data

Combine and analyze data, without disclosing source data

Strong security and legal compliance

Guaranteed by Multi-Party Computation (MPC)

Easy to use software

Used by the National Cyber Security Center

Safely combine data with Roseman Labs

Data owners make data available

Approve analysis

Combine tables and run analysis

Share insights

MPC in a nutshell

Data encrypted at the source into "secret shares¹"

Secret shares distributed over multiple severs

Servers jointly execute calculation on encrypted data

Only the result is revealed

Calculation example

Sophisticated cryptography made easily accessible

Web portal

			(+					
D DATA	Add new data source Upload your data. The data will be automatically encrypted before	r uplaxting,	C Back to overview					
	Data source information	Name						
ANALYSES	The name and description is visible for all users.	Banking Data						
100121020		Description (spcosa)						
\$		Dataset ABC Bank						
SETTINGS								
	File	Delimiter						
	Add your CSV file. The maximum file size that is allowed is 100MB. Note that this limit applies to your file after encryption.	Comma (,)	~					
	Encryption may drastically increase the file size, especially when the data contains many strings columns.	Data source						
		0						
		ta_scaled_b.csv						
	Validate data layout							
	Check and update the data layout to make optimal use of your data in Crandas.							
	Your data source has 12000 row(s), 5 cotumn(s) and a total size of 875.98KB							

Python package

ELauncher					×	1	🛛 syn,	scannerd	ata.csv	×	R 20221108 CR_demo.ipynb	× +			
a + %	10	3	Ċ.	٠		C	. 10	Code	~					0	Python 3 (pykernel
	tr) exi	y: cept pr r,	r_di ti dati rela	ata ("Up a = evan	= cd load pd.r t_co = cd	i.g	et_ta det d_csv ms =	ble(rive a*) ('./cr_d ['pdt_e 'SPP_OM 'ENERGI 'ENERGI 'ANTRU 'VETZUN 'EIMITT 'MONOCH 'AMTRU STANDA 'AMTAL pandas	Lhandle) lata/r_da accode', SCHRIJVI ENAARDEI ENAARDEI ENAARDEI M_NG', ENVERZAD UTAAL_G' DISACCHA GSVEZEL_ ARD PORT _PORTIES datafram	ta.csv' NG', NG',KJ' NKCAL_K IGD_G', RIDEN_G G', IEGROOT PER_VE e(r_dat	, mrouserous_per_dataset) ; col., ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	='r_data')			
	Up) tis	load me:	ting 4.4	dat s (a	ter	1: 28	22-11-11	12:49:8	2 +00:0	8)				
[14]:	mer pr3	nged int(1 = 4 (*3ot	cd.m in c	omp1	e(c	c_da ed on	ta, c_r_ :', len(data, ho merged),	'rows'	r", left_on='Eannr', right_)	on='pdt_eancode')			
	Joi tie	in o me:	247	lete ms	d on (sta	n: : arta	1800 ed: 2	rows 022-11-1	1 12:49:	20 +00:	00)				
[10]:	<pre>reg_reproductation = except(fication(Write(C))) = ex() exc_w(write(Write(C))) = iso(except(fication(C))) = ex() exc(write(Write(Fication(C))) = exc(Fication(C))) = ex() exc(Write(Fication(C))) = exc(Fication(C))) = exc(Fication(C))) exc(Write(Fication(C))) = exc(Fication(C))) = exc(Fication(C))) exc(Write(Fication(C))) = exc(Fication(C))) = exc(Fication(C))) exc(Write(Fication(C))) = exc(Fication(C))) = exc(Fication(C))) exc(Write(Fication(C))) = exc(Fication(C))) = exc(Fication(C)) = exc(Ficatio</pre>														
	Gen Aar	midd ntal	deld pro	aan	tal ten	wer	rkoch t ver	te produ koopaant	cten: 23 al 0: 2	909					
	lat	bely	و ال	st -	["E	ENER INER INER	NGIEW NGIEW NIUM_ ZUREN	AARDEINK AARDEINK MG', VERZADIG	D_KJ', KAL_KCAL	9					
													Mode: Command	In 1. Co	ol 1 20221108 CR_de

Data request forms

Questionnair Click on a quest	e ion (or section title) to edit it						
Question 1	Country of the affected organization						
🗆 to skip							
Question 2	Choose one between:						
🗆 to skip	O private company						
	O non-profit company						
	○ government-related						
Question 3	How many PlugX infections did you observe in the last 3 months?						
🗆 to skip	50						

- Manage collaboration: users, rights, data sources
- Make data sources available
- Review and approve scripts •

- Write python scripts with Roseman Labs Crandas library Deploy across different data ۰
- sources
- Request approval and run your • scripts

Enable easy data collection among a large number of participating parties - structured and unstructured

Benefits

More data: Use sources that the data owner is not prepared / able to share with you

Safe: data is protected by highest security level at all time. Data is not shared. Strong GDPR compliance: purpose binding, control, data minimization

Faster: setting up a collaboration can be done on weeks, rather than months or years

(For reference) MPC performance for different operations

Seconds	Minutes	Hours
• Sums / Voting / Surveys (1M rows)	• SVM (training)	• Neural networks (training, LeNet)
• Private set intersection (1M rows)	• Decision trees (training, 10k rows)	• Random forests (training)
• Filtering (1M rows)	 k-means clustering (10k rows) 	
• Linear regr. training (1M rows)	• Logistic regr. training (100k rows)	
• Neural networks (inference, VGG16)		
 Decision trees (training, 1k rows) 		
 Random forests (inference) 		
	 Seconds Sums / Voting / Surveys (1M rows) Private set intersection (1M rows) Filtering (1M rows) Linear regr. training (1M rows) Neural networks (inference, VGG16) Decision trees (training, 1k rows) Random forests (inference) 	 Seconds Minutes Sums / Voting / Surveys (1M rows) • SVM (training) Private set intersection (1M rows) • Decision trees (training, 10k rows) Filtering (1M rows) • k-means clustering (10k rows) Linear regr. training (1M rows) • Logistic regr. training (100k rows) Neural networks (inference, VGG16) • Regex (100k rows) Decision trees (training, 1k rows) Random forests (inference)

This indication of computational time is based on a regular server (up to 32 cores). The exact compute time depends on a number of factors, such as server type (number of CPU cores), number precision, and network latency.

Contact: Freya.de.Mink@rosemanlabs.com

