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A B S T R A C T

Motivation: Acute ischemic stroke is one of the leading causes of morbidity and disability worldwide, often
followed by a long rehabilitation period. To improve and personalize stroke rehabilitation, it is essential to
provide a reliable prognosis to caregivers and patients. Deep learning techniques might improve the predictions
by incorporating different data modalities. We present a multimodal approach to predict the functional status
of acute ischemic stroke patients after their discharge based on tabular data and CT perfusion imaging.
Methods: We conducted experiments on tabular, imaging, and multimodal deep learning architectures to
predict dichotomized mRS scores 3 months after the event. The dataset was collected from a Dutch hospital
and includes 98 CVA patients with a visible occlusion on their CT perfusion scan. Tabular data is based on
the Dutch Acute Stroke Audit data, and imaging data consists of summed-up CT perfusion maps.
Results: On the tabular data, TabNet outperformed our baselines with an AUC of 0.71, while ResNet-10 on
the imaging data performed comparably with an AUC of 0.70. Our implementation of the multimodal DAFT
architecture outperforms baselines as well as comparable studies by achieving an 0.75 AUC, and 0.80 F1 score.
This was achieved with a final model of less than a hundred thousand optimizable parameters, and a dataset
less than half the size of reference papers.
Conclusion: Overall, we demonstrate the feasibility of predicting the functional outcome for ischemic stroke
patients and the usability of multimodal deep learning architectures for this purpose.
1. Introduction

To this day, acute ischemic stroke (AIS) is one of the leading causes
of morbidity and disability worldwide with over 12.2 million new
strokes each year [1]. It is estimated that the global cost of stroke is
exceeding US$ 721 billion and it remains the second-leading cause of
death and the third-leading cause of death and disability combined [1].
Acute ischemic strokes (caused by vessel occlusions usually due to
a blood clot, creating a disruption in the blood flow) are the most
common globally, accounting for at least 70% of all strokes [2]. Large-
Vessel Occlusions (LVOs) amount to 29.3% of these AIS, of which most
occur in the anterior circulation [3]. We focus on disruptions caused by
LVOs, as they are associated with poor functional outcome and impose
a 4.5-fold increase in mortality compared to other types of ischemic
strokes [4]. To achieve optimal recovery, it is highly important to have
a prompt diagnosis, effective communication, and fast treatment, which
also makes it a great candidate for the application of Artificial Intelli-
gence (AI) and Machine Learning (ML) techniques [5]. ML techniques
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have been shown to achieve significant success in helping medical
professionals with fast and accurate diagnoses [6]. Apart from clinical
information, which describes the state of the patient as a whole, doctors
mainly focus on imaging techniques to get a better understanding of
the situation [7]. Traditionally, Non-Contrast Computed Tomography
(NCCT) is recommended by the American Heart Association’s Stroke
Council as the first modality of choice for stroke investigation [8]. In
this context, a few studies already looked at the potential of Machine
Learning models for predicting clinical outcomes for stroke patients [9,
10]. However, these studies mainly experimented with models that are
based on available clinical data and NCCT imaging features prior to
treatment. Yet, it is limited in capability: deterioration is not visible on
images up to 6 h with ischemic stroke [11]. There are now other, more
advanced imaging techniques with widespread availability in hospitals
to obtain deeper insight into the patient’s current situation.

One of these techniques is called Computed Tomography Perfusion
(CTP) which is obtained via administering a contrast material to the
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patient through intravenous injection and allows measuring of the
extent of irreversibly injured brain tissue called the ischemic core, and
the potentially salvageable but hypoperfused ischemic penumbra [11].
A favorable outcome is associated with a large ischemic penumbra in
the setting of successful recanalization, while it may predict an unfa-
vorable outcome in the absence of recanalization, as a large amount of
potentially salvageable brain tissue is going to infarct [12]. A study by
Hopyan et al. [13] also showed that an incremental stroke protocol that
includes CTP increases diagnostic performance for stroke diagnosis.

Many problem domains are naturally based on multiple modalities,
such as medicine [14,15] (e.g., physicians usually make diagnoses
based on different kinds of medical images and clinical data), sentiment
analysis [16,17] (e.g., in face-to-face interactions, the understanding
of sentiment is much more nuanced as we can also interpret body
language in addition to spoken language), and many others. Therefore,
there has been an increased focus on combining data of different
natures recently to create more robust representations and further
improve predictive performance. By using information from different
representations of the same subject, a more elaborate picture of the
problem at hand can be constructed [18].

To improve upon stroke care and to be able to give a reliable prog-
nosis to caregivers and patients, it is beneficial to accurately predict the
functional outcome. Utilizing ML techniques not only provides helpful
predictions for medical professionals to support clinical decisions but
also allows for a more standardized way of diagnosis. In line with
this, we propose the use of a multimodal neural network to predict
the functional status of ischemic stroke patients based on the modified
Rankin Scale score (mRS) [19], which is generally used in clinical
trials measuring functional independence and recovery. To provide a
fast prognosis, we only use data that is available up until treatment.
To achieve this, we investigate the applicability of a novel general-
purpose module for computer vision tasks, called the Dynamic Affine
Feature Map Transform (DAFT), for the first time on the task of
predicting the functional outcome. This module is aimed at effectively
combining 3D images with tabular information and has been proven
to outperform traditional Convolutional Neural Networks in diagnosis
and time-to-dementia prediction regarding Alzheimer’s disease [20].
We also plan to evaluate the predictive performance of clinical and
imaging characteristics obtained prior to treatment. To do so, first, we
propose to implement a state-of-the-art neural network for tabular deep
learning called TabNet, which offers interpretability and performance
improvements. To the best of our knowledge, no previous studies have
tried that before. Secondly, for the imaging modality, we implement a
ResNet-type architecture and investigate the utility of transfer learning
on our dataset.

2. Related work

Predicting the functional outcome of a stroke patient encompasses a
complex problem with many modalities that must be taken into account
to arrive at a final prediction. Functional outcome in previous studies is
usually measured in Modified Ranking Scale (MrS) scores [21], a scale
from 0 (no residual symptoms) to 5 (severe disability), with 6 signifying
the patient has since passed away. Due to non-uniform distributions and
the difficulty of predicting the functional status, some papers simplified
the problem by dichotomizing the mRS. We will look at studies that
have aimed to utilize medical imaging (MRI, CT, or PCT), to obtain a
prediction of functional outcome, an overview is shown in Table 1. One
of the first notable attempts was done by Choi et al. [22], who proposed
an ensemble of networks for the tasks of lesion and clinical outcome
prediction on the ISLES 2016 dataset. For predicting the mRS score,
they combined a CNN and a logistic regression model as an ensemble.
They randomly chose between the output of the two models, which
resulted in the best performance and ranked second in the challenge.
2

The evaluation measure was the average of absolute errors between the
true and predicted scores with a score of 1.10 ± 0.70 for the ensemble
model.

Several papers only used imaging data to predict functional status.
Hilbert et al. [23] proposed a data-efficient DL method, based on
Structured Receptive Field Neural Networks (SRFNN), a specific type
of CNN to reduce model parameters and overfitting on limited data
sets. Their model predicts the mRS outcome using full-sized 2D CT
images. They reached comparable performance to conventional CNNs
while reducing the total number of weights by almost 50%. Osama
et al. [24] proposed to use few-shot learning with a parallel multi-
parametric feature-embedded Siamese Neural Network (SNN) [25] to
predict the mRS score based on the ISLES 2017 challenge dataset [26].
To train the Siamese networks, the MRI images were fed as pairs into 2
parallel CNNs that share the same weights. This results in an averaged
accuracy of 0.37 on each mRS class using leave-one-out cross-validation
testing. Nishi et al. [27] used only Diffusion-Weighted Imaging (DWI)
MRI data of 250 patients as input for training a multioutput CNN,
to both predict the dichotomized outcome and segment the ischemic
core lesion. Data augmentation was used to improve the model perfor-
mance due to the small sample size. The reported performance of this
method was 0.724 in accuracy and 0.81 in AUC with five-fold cross-
validation on the training set while scoring 0.654 and 0.73 respectively
for accuracy and AUC on the test set. This shows a big difference
between train and test sets, which hints at overfitting, possibly due to
the data augmentation. Moreover, these papers only used imaging data,
while combining clinical and imaging data can lead to an increase in
predictive performance.

Brugnara et al. [28] assessed the predictive performance and rel-
ative importance of clinical, multimodal imaging, and angiographic
characteristics to predict the clinical outcome after endovascular treat-
ment. They built four Gradient Boosting Classifiers with different types
of input features, gradually progressing from clinical and regular CT
characteristics through multimodal imaging to even post-interventional
parameters. According to their findings, post-interventional parame-
ters had the most predictive power, while CT perfusion had limited
importance on top of conventional imaging characteristics. Hamann
et al. [29] also investigated whether imaging variables from Mag-
netic Resonance (MR) scans would improve individual prediction of
functional outcome after early (<6 h) endovascular treatment. Their
results were also in line with Brugnara et al., outcome prediction only
improved slightly when imaging features were added. They made use
of Random Forest (RF) classifiers with MR images instead of CTP
scans and obtained quantitative imaging features via automatic volume
segmentation based on thresholds. While these studies show limited
addition of imaging data to clinical data, they do not use DL techniques,
thereby showing that DL might be essential to improve functional status
predictions with imaging data.

Bacchi et al. [30] did use DL techniques. They used clinical data
and Non-Contrast Computer Tomography (NCCT) images to predict the
outcome of thrombolysis based on 204 patients. Their best-performing
model is a branched deep learning architecture concatenating a CNN
branch with a Fully Connected Network (FCN), which reached a score
of 0.74 in accuracy, 0.69 in F1 score, and 0.75 AUC. They highlight
the need for larger datasets and the incorporation of CT angiograms
and perfusion imaging. Samak et al. [31] presented a novel approach
to predict the functional status from multimodal data working with
the MR CLEAN dataset [32], which contains NCCT images and clinical
metadata. Their main contribution is the use of an attention mechanism
that extracts features both spatially and channel-wise, resulting in
superior performance compared to regular ResNet-type architectures
and the results of Bacchi et al. [30]. They reach a 0.62 F1 score and
0.75 AUC in dichotomous mRS scores and 0.35 classification accuracy
in individual mRS scores. These papers show that using deep learning
techniques on multimodal data can lead to better-performing predictive

models.
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Table 1
An overview of the best results of previous work on individual mRS score prediction.
Ref. Model Img. mod. Dichotomized Non-dich. Dataset

Acc. AUC F1 Acc. AAE size

[28] GBC CT(P) 0.72 0.75 – – – 246
[29] RF MRI – 0.68 – – – 222
[23] SRFNN 2D CT – 0.69 – – – 772
[30] Naive Late Fusion CT 0.74 0.75 0.69 – – 204
[27] CNN MRI 0.72 0.81 – – – 324
[31] IMF Block NCCT 0.77 0.75 0.62 0.35 – 500
[22] Naive Late Fusion MRI – – – – 1.1 35
[24] SNN MRI – – – 0.37 43
3. Contributions

In this paper, we propose a method for functional outcome predic-
tion based on the tabular and imaging data, and our main contributions
are summarized as:

1. The combination of imaging and tabular clinical data in a novel
multimodal deep learning architecture called DAFT [20].

2. The evaluation of three data fusion techniques to arrive at the
best performing predictor of functional status.

3. The utilization of a state-of-the-art deep tabular learning net-
work called TabNet on the tabular patient data, that offers
interpretability and performance improvements.

4. The investigation of the utility of transfer learning on our
dataset.

5. The evaluation of the predictive performance of clinical and
CT Perfusion imaging characteristics both individually and com-
bined.

4. Methods

We implemented a network that can combine multimodal features
in a novel way based on the Dynamic Affine Feature Map Transform
(DAFT) from Pölsterl et al. [20]. To put our results into context, we also
introduced different machine learning models for each modality. To
predict the functional status, we built models to predict good outcome
and treatment success (scores 0–2), or poor outcome and treatment
failure (scores 3–6). To evaluate the impact of our proposals and for
comparison with previous studies we structured our experiments in the
following way:

• First we implemented previously utilized Machine Learning tech-
niques on the clinical data as a baseline. This includes Ran-
dom Forests [33], Gradient Boosted Classifiers (GBC) [34], and a
recently developed DL model for tabular data called TabNet [35].

• Secondly we established an imaging baseline using a ResNet-10
architecture and investigated the utility of transfer learning on
this network.

• Thirdly we examined the utility of different data fusion models
by providing a baseline with naive late and hybrid fusion, and
evaluated the utility of affine transformations based on DAFT.
Experiments on a single modality – apart from serving as a bench-
mark – are also aimed to help and illustrate the process of how we
made certain decisions and arrived at the final multimodal model.

.1. Dataset

We collected patient data from St. Antonius Hospital from October
, 2018 to December 31, 2019. Clinical data was from the Dutch Acute
troke Audit (DASA) [36], a national registry with acute ischemic
troke and intracranial hemorrhage patients. In this period, 1003 cases
ere recorded in the DASA. However, only 799 of them were classified
s infarct cases. Further exploration of the patient list revealed that CT
erfusion scans were available for 374 patients and only 104 of them
3

Table 2
Patient characteristics.

Categorical Variables (%) Numerical Variables (avg(std))

Referred 14 Door to Needle (min) 14.9 (23.0)
Wake-up 23 Door to Groin (min) 60.9 (85.9)
Gender(m) 51 NIHSS score 11.5 (5.7)
Intravenous thrombolysis 38 Penumbra (volume) 82.1 (64.1)
Intra-arterial thrombolysis 61 Penumbra (%) 8.6 (6.1)
Atrial Fibrillation 14 Core (volume) 32.0 (39.1)
Occlusion in M1 57 Core (%) 3.3 (3.8)
Occlusion in M2 34 Age (years) 73.0 (12.5)
Occlusion in M3 8 Time to hospital (min) 211.2 (388.8)

had ischemia with both CTP scans, mRS scores, and radiologist reports
available. Fig. 1 denotes the composition of the received patient list.
This study was approved by the board of St. Antonius Hospital (under
number Z20.016) after Medical Ethics Commission Utrecht (MEC-U)
issued a non-WMO statement (under number AW22.012/W20.034).

We chose to use CTP scans for this study, as it has been argued that
they would contain predictive information for the functional outcome
of CVA [30], yet no other study has investigated deep learning on CTP
imaging. We excluded patients who had faulty scans, such as movement
during scanning time or incorrect Cerebral Blood Volume readings,
which resulted in a dataset of 98 cases. When patients had multiple
CTP scans on the same day, here we always extracted the latter ones
if they were still before treatment, as most of the time a second scan
is requested because of an insufficient first reading. Multiple scanner
types were used in different locations, resulting in different reading
sizes for patients, which were standardized as described in the data
pre-processing section.

Our clinical dataset included the following features: age, gender,
wake-up (whether the patient experienced symptoms at waking up),
arterial fibrillation (binary), whether the patient was referred from
another hospital, National Institutes of Health Stroke Scale (NIHSS)
score at presentation, Time-To-Hospital (TTH), whether treated via
intravenous (IVT) or intra-arterial (IAT) thrombolysis, Door-To-Needle
time (DTN), Door-To-Groin time (DTG), region of occlusion, the volume
and the percentage of the ischemic core and penumbra. We specif-
ically chose these features as they were already part of automated
processes in the hospital, and would not require extra data collection
by neurologists or radiologists. Details can be found in Table 2.

4.2. Data preprocessing

4.2.1. Tabular data
For all clinical models, continuous variables were standardized by

scikit-learn’s StandardScaler function. If the Door-To-Needle (DTN) or
Door-To-Groin (DTG) features were missing, it was imputed by 0. Other
missing values were handled with scikit-learn’s IterativeImputer, which
is a multivariate imputer that estimates each missing value by modeling
them as a function of other features in a round-robin fashion. The

function used was Bayesian ridge regression [37].
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Fig. 1. Flowchart of patient selection.
4.2.2. Imaging data
The CT perfusion dataset was heterogeneous due to the use of differ-

ent scanners, containing (1) 16 slices repeated 50 times; (2) 16 slices
repeated 60 times; and (3) 8 slices repeated 50 times not containing
the upper part of the intracranial area, so they were padded to achieve
a standard of 16 slices, instead of resampling the voxel space. Each
slice had a resolution of 512 × 512 pixels, which we downsampled to
128 × 128, arriving at the final dimension of 128 × 128 × 16.

Raw feature maps As perfusion scans are obtained via administer-
ing a contrast agent to the bloodstream and taking repeated readings
with a CT scanner, the resulting scan can be dealt with in multiple
ways. We treated the time dimension to reduce noise, by obtaining
different feature maps by (1) averaging and (2) summing up over the
temporal dimension. The first allows us to have a scan with reduced
noise levels, while the second results in more defined perfusion levels,
by taking the sum of areas where the contrast agent is in higher
concentration.

Computed CT Perfusion maps To obtain parametric perfusion
maps of cerebral blood volume (CBV), cerebral blood flow (CBF),
mean transit time (MTT), and time-to-peak (TTP), raw CTP scans were
post-processed using Philips IntelliSpace Portal 11.0, Brain Perfusion
application software [38]. It is capable of automated registration, seg-
mentation, and motion correction and prepares summary maps based
on a perfusion delay-sensitive algorithm. All scans were processed by
default settings with motion correction and filtering enabled. Ischemic
core and penumbra volumes were also extracted for the clinical and
multimodal models. Ischemic core was defined as a relative MTT >
150% and an absolute CBV < 2.0 ml/100 g and penumbra as a relative
MTT > 150% and an absolute CBV > 2.0 ml/100 g. The images were
cropped removing headers and scales. Fig. 2 shows an example of
the output of the 6 feature maps (2 raw and 4 computed maps). To
try out the utility of combining the 6 maps, we made the parametric
computed perfusion maps greyscale (to reduce dimensionality), then all
6 maps were stacked together as channels, resulting in the final input
dimension of 6 × 128 × 128 × 16.

4.2.3. Dichotomization of outcomes
The distribution of mRS scores contains large class imbalances. Indi-

vidual scores should share approximately the same number of instances
to be able to train models that could learn to differentiate between
them. Up-sampling of minority [39] or down-sampling of majority [40]
classes was not possible in our case as the dataset was too limited.
Instead, we decided to dichotomize the clinical outcomes by defining a
favorable outcome as a patient who has an mRS score between 0 and 2
(requiring no assistance), and an unfavorable outcome as an mRS score
above 2 (needing assistance). Fig. 3 shows in detail the distribution of
individual and dichotomized outcomes.
4

4.3. Tabular architectures

To predict the clinical outcome of ischemic stroke patients based on
clinical patient characteristics, previous work made use of Multi-Layer
Perceptrons and ensemble techniques, such as Random Forests [33]
and Gradient Boosted Models [34]. For comparison with previous
studies, we also implemented a Random Forest and a Gradient Boosted
Classifier. However, instead of a vanilla MLP, we implement a recently
developed method called TabNet [35]. TabNet is a novel deep learning
method that aims to harvest the power of DL for tabular data with
an interpretable multi-step deep tabular data learning architecture
based on Transformers [41]. TabNet uses sequential attention to choose
which features to reason from at each decision step – essentially
mimicking the behavior of decision trees – enabling local and global
interpretability and more efficient learning as the learning capacity
is used for the most powerful features. Moreover, it can handle raw
tabular data without any preprocessing. TabNet translates the local and
global interpretability as feature importances.

4.4. Imaging architectures

To establish an imaging baseline, we employ a type of ResNet
architecture, but a smaller version of it called ResNet-10, based on the
implementation of Pölsterl et al. [20]. It is constructed by removing
half of the Residual Units from ResNet-18 making it less complex with
fewer parameters to train, which is desirable with a small dataset. As
the performance of neural networks is heavily affected by the volume
of training data, another approach to improve model performance is by
utilizing transfer learning. Networks pre-trained on large datasets can
help to converge faster and improve predictive performance and gener-
alizing ability [42], yet it is very challenging to build up a sufficiently
large dataset for medical imaging due to privacy concerns. We therefore
also implement the ResNet-10 of MedicalNet [43] multiple pre-trained
models on 3D medical imaging of up to 23 different medical image
segmentation tasks.

4.5. Multimodal architectures

One of the ways to process multimodal data is to use unimodal
architectures with a different feature extractor for each modality and
combine their representations in the network using multilayer percep-
trons (MLP) to create the output predictions. In this situation, data
fusion is the unique aspect of learning where information from different
data sources needs to be combined. This process may happen right after
the input data is presented (Early fusion), before the final classification
(Late fusion), or multiple times in the middle (Hybrid fusion) [18]. By
using information from different representations of the same subject, a
more elaborate picture of the problem at hand can be constructed [18],
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Fig. 2. A random sample from the dataset, showing an example of the parametric perfusion maps. The shown maps are (left to right). Top: cerebral blood volume (CBV), cerebral
blood flow (CBF), mean transit time (MTT) and time-to-peak (TTP). Bottom: Averaged and Summed-up perfusion maps.
Fig. 3. The distribution of the individual mRS scores, and the favorable (mRS 0–2) and unfavorable (mRS > 2) outcomes.
however, each of these strategies can suffer from shortcomings in their
capabilities. Both early and hybrid fusion falls short in utilizing transfer
learning effectively [44] while naive late fusion tend to focus on the
imaging dimension during training as there is a great dimensionality
mismatch between the two data sources, which can result in only
marginally better performance than using image data alone [20].

Unlike previous work, where only naive late fusion was applied to
predict the functional outcome in multimodal networks, our approach
aims to utilize affine transformations to fuse clinical and imaging data
in a novel way. We base our network architecture on a recent study by
Pölsterl et al. [20], where they successfully utilized a unique network
type to diagnose Alzheimer’s disease and predict time-to-dementia.
They introduced the Dynamic Affine Feature Map Transform (DAFT)
block in a ResNet-type architecture. It is a generic module that can be
integrated into any CNN and establishes a two-way exchange of infor-
mation between high-level concepts learned from the 3D image and the
tabular biomarkers by dynamically rescaling and shifting the feature
maps of a convolutional layer based on clinical data. It is important to
have a level exchange of information between the two modalities, as
tabular information comprises demographics and summary measures
that describe the patient’s state as a whole. Therefore, they proposed
to affinely transform the output of a convolutional layer in the last
residual block, where the network describes the image in terms of
high-level rather than primitive concepts, such as edges.

The use of the DAFT block could offer significant improvements,
as it can inform the convolution blocks with clinical data such as
5

the occlusion site, so the network can incite or repress high-level
features learned from the image in associated brain regions to improve
predictive performance. DAFT is computationally efficient, because it
does not depend on the number of instances in the dataset, nor the
spatial resolution of the feature maps. The transformation is described
in [20] in the following way: let 𝑥𝑖 ∈ R𝑃 denote the for the 𝑖th instance
of the tabular information and 𝐹𝑖,𝑐 ∈ R𝐷𝑥𝐻𝑥𝑊 denote the 𝑐th output
(feature map) of a convolutional layer based on the 𝑖th volumetric
image (𝑐 ∈ {1,… , 𝐶}). The network learns the Dynamic Affine Feature
Map Transform (DAFT), with scale 𝛼𝑖,𝑐 and offset 𝛽𝑖,𝑐 :

𝐅𝑖,𝑐 = 𝛼𝑖,𝑐𝐅𝑖,𝑐 + 𝛽𝑖,𝑐 , 𝛼𝑖,𝑐 = 𝑓𝑐 (𝐅𝑖,𝑐 , 𝑥𝑖), 𝛽𝑖,𝑐 = 𝑔𝑐 (𝐅𝑖,𝑐 , 𝑥𝑖), (1)

where 𝑓𝑐 , 𝑔𝑐 are arbitrary functions that map the image and tabular
data to a scalar. Functions 𝑓𝑐 , 𝑔𝑐 are modeled by a single auxiliary
neural network ℎ𝑐 that outputs one 𝛼, 𝛽 pair, which they refer to as
DAFT. DAFT first creates a bottleneck by global average pooling of
the feature map, concatenating the tabular data, and squeezing the
combined vector by a factor 𝑟 via a fully connected layer. Next, both
vectors are concatenated and fed to an MLP without bias terms that
compute the vectors 𝛼𝑖 and 𝛽𝑖; following the work of Hu et al. [45].
Linear, sigmoid, and tanh activation functions can be applied to the
scale 𝛼. We utilize a slightly altered version of the proposed network by
adding a dropout layer before the last fully connected layer to combat
overfitting caused by our small sample size.

We compare our DAFT-inspired model to a naive late fusion and a
hybrid fusion model. Early fusion was not included in the experiments
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Fig. 4. Implemented multimodal architectures for comparison. A) Dynamic Affine Feature Map Transform (DAFT) based on the work of Pölsterl et al. [20]. B) Naive late fusion
model C) Hybrid fusion model.
as it did not seem fruitful based on the work of Pölsterl et al. [20]. A
visualization of the implemented architectures can be seen in Fig. 4.
We also chose to incorporate the best-performing baselines into the
different multimodal architectures, to compare to our vanilla setups.
For TabNet, we used the featurized outputs of the pretrainer [35] as
input for the tabular branch of all three the multi-modal architectures.
The pretrainer functions similar to the standard TabNet, but creates
featurized inputs as its outcome. For the pretrainer, we used the same
setup and hyperparameters as the best performing regularly-trained
TabNet configuration.

4.6. Experimental setup

We used the Receiver Operating Characteristics Area Under the
Curve (ROC-AUC) [46] and F1 score [47] metric to compare model
performance. AUC is the main characteristic, F1 score is added for con-
text on specificity and sensitivity, as our labels are slightly unbalanced.
After preprocessing, we divided the samples into training and testing
sets via stratified random sampling to preserve data distribution with
a train-validation-test split of 60%-20%–20%. Data of both modalities
was standardized.

Our experiments were performed using Python 3.8 with scikit-learn
and PyTorch as machine learning frameworks. To train the models, a
virtual server was used inside the hospital to prevent data from leaving
the hospital’s environment, which included 4 Intel Xeon Gold 6254 CPU
cores, 24 GB RAM, and a single NVIDIA Tesla T4-4Q GPU with 4 GB
VRAM.

To compensate for the small dataset, we used multiple augmen-
tation techniques to combat overfitting. For this, we made use of
built-in image transformations from the MONAI [48] framework. Data
augmentation was performed on the images, details can be found in
A. For all models we performed hyperparameter searches, details of
the finetuned hyperparameters and their best configurations can be
found in B. For the multimodal models, the versions with TabNet
featurized inputs were separately tuned. Moreover, also normalization
of the featurized input was attempted as part of the tuning process.

5. Results

5.1. Clinical models

In the clinical modality, we tested three different models to establish
a baseline, and to see how we compare to previous studies with our
6

Table 3
Model performance on single modality data.

Model AUC F1 score

Clinical modality GBC 0.61 0.60
RF 0.65 0.67
TabNet 0.71 0.70

Imaging modality ResNet-10 0.70 0.52
MedicalNet 0.62 0.72

DASA dataset. These results can be seen in Table 3. Our reference RF
classifier performed better than the GB classifier on the test set, with
better AUC and F1 score. Our proposed method TabNet outperformed
the other baselines with a 0.71 in AUC, with a balanced profile in AUC
and F1 score. As TabNet also offers interpretability, Fig. 5 illustrates
the feature importances on decision-making, both globally and for three
local instances. As we can see, age is overwhelmingly important in the
global feature importance, while most other features only account for
about 5% to 10% of the decision making. It is interesting that for the
individual predictions, the feature importance differs from the global
feature importance, with age not necessarily being the most important
feature. Moreover, TabNets embedding also causes only a few features
per prediction to be selected.

5.2. Imaging models

To establish an imaging baseline, we experimented with 2 different
models with very similar architectures, Resnet-10 and MedicalNet. We
first investigated the effect of including different imaging modalities,
as previously described in the data preprocessing section. We trained
our ResNet-10 with (1) all of the available perfusion maps (2) only the
four computed maps such as CBV, CBF, etc. (3) only the summed up
and averaged maps (4) each of the 6 maps on their own. From this,
we concluded that using only the summed-up perfusion maps yields
the best performance and moved forward using this single imaging
modality. Next to the ResNet-10 model from scratch, we fine-tuned the
ResNet-10-based MedicalNet. The main difference is in the number of
filters in these models. Table 3 shows the results of these experiments.
We see an overall better performance than with the clinical modality.
Implementing the pre-trained MedicalNet network did not live up to the
expectations, as it underperformed in AUC compared to the ResNet-10,
though it did have a better F1 score. As MedicalNet did not lead to an
improvement in predictive performance, it was not considered further
as input for the multimodal architectures.
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Fig. 5. Feature importances for the TabNet model. Top left: Global feature importance for the total model. Bottom: local feature importance of 3 individual predictions.
5.3. Multimodal models

Finally, to investigate the utility of combining the clinical and
imaging modalities, we have trained 3 different models to explore the
potential of naive late fusion, hybrid fusion, and dynamic affine trans-
formations (DAFT). We have trained these models with the standard
tabular data input, and the featurized TabNet output. We would expect
the multimodal models to improve in performance compared to both
the separate modalities. However, the results in Table 4 show that
the Hybrid fusion model on the standard data falls behind the other
modalities. Due to the fact that the training curve of this model comes
close to 1 and the validation curve stagnates, this hints at overfitting
on the non-augmented tabular data due to our small dataset. Our Naïve
late-fusion model comes close to the other modalities but still falls
behind with 3% in AUC and 5% in F1 score. We tried to improve
the generalizing ability of both models by including dropout layers
at different locations in the network, yet they still underperformed
compared to the other modalities. For both these models, using the
TabNet input increases the performance, to be slightly better than the
results from the singular modalities separately.

While these two models show deep learning-based data fusion mod-
els on our small dataset as not very attractive, our modified DAFT
model shows improvement. With an AUC of 0.75 and F1 score of
0.80, it outperforms our other fusion models, even those that were
trained with the TabNet pretrained input. Interestingly, using the Tab-
Net pretrained input led to a comparable AUC, but a worse F1 score.
The final DAFT model had less than a hundred thousand optimizable
parameters, compared to the pre-trained MedicalNet which had 14.4
million parameters due to the much larger feature map sizes.

6. Discussion

The results of our paper show that both TabNet and DAFT are
suitable options for a clinical prediction model on functional outcome
after stroke, depending on what data is available. We compare our
results to the literature in Table 5. It is important to highlight that
these studies are performed on different datasets. Our proposed method
TabNet managed to outperform the baselines with a 0.71 in AUC,
with a balanced profile in AUC and F1 score. We can see that our
TabNet model performs on par with previous studies, with a better F1
7

Table 4
Model performance on multimodal data.

Model AUC F1 score

DAFT 0.75 0.80
Naive late fusion 0.67 0.47
Hybrid fusion 0.68 0.37
DAFT+TabNet 0.74 0.59
Naive late fusion+TabNet 0.72 0.70
Hybrid fusion+TabNet 0.72 0.63

score. Given that our dataset was at most half the size of the other
comparable studies, shows that the proposed transformer-based TabNet
architecture for the clinical modality is promising in case only clinical
data is available. It outperforms both random forests and gradient
boosting classifiers on our dataset. These are typically well-performing
algorithms on tabular data, as we can see in comparable studies, so
this supports the potential of TabNet. It would likely benefit from
larger datasets, where even self-supervised pre-training could boost
performance.

Moreover, the most important variables found by TabNet (age and
door-to-needle time a.o.) match with what is known in the litera-
ture [28]. It is important to highlight that TabNet did not outperform
the clinical models of the comparative studies. Though the imple-
mented baseline models struggled to achieve comparable performance
— GBC being worse with this limited sample size. Moreover, we chose a
readily available dataset in DASA to create a more realistic scenario for
implementation, but this might have limited our feature set compared
to previous studies.

Our imaging models performed similarly to previous papers. Our
ResNet-10 model performs comparably or slightly better than the previ-
ous studies, apart from [27] seems to outperform it in terms of AUC, but
we do not know their F1 score. Transfer learning with MedicalNet did
not live up to the expectations, as it underperformed in AUC compared
to the baseline ResNet-10 trained from scratch. As the MedicalNet
was trained on 23 different segmentation tasks, it is possible that
the difference between the pre-training and our classification tasks
was too large to improve performance in this case. With the limited
data availability, the comparable results could hint at a benefit of CT
perfusion scans as opposed to regular Non-Contrast CT imaging.
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Table 5
Comparison of our best performing model for each modality to the literature.

Ref. Model AUC F1 score Dataset size

Clinical Modality [30] FCN 0.61 0.70 204
[27] FCN 0.64 – 324
[29] RF 0.65 – 222
[28] GBC 0.75 – 246
[31] ClinicDNN 0.70 0.56 500
Our TabNet 0.71 0.70 98

Imaging modality [30] CNN 0.54 0.72 204
[27] CNN 0.81 – 324
[31] CNN 0.67 0.46 500
Our ResNet-10 0.70 0.52 98

Multimodality [30] Naive late fusion 0.75 0.69 204
[31] IMF block 0.75 0.62 500
Our DAFT 0.75 0.80 98
If we compare our results with previous multimodality studies in
able 5, our DAFT model managed to surpass comparable studies.
hile it offers a comparable AUC, the F1 score is a notable 11% better.

hese results affirm that informing the imaging representation with the
verall state of the patient by affinely transforming the feature maps
llows the network to differentiate notably better between outcomes.

Intuitively, for a multi-modal model that combines imaging and
linical data the expectation is a better performance than a model
ased on either of the modalities separately, simply because of the
ore extensive data. Interestingly, this was not necessarily the case, as

he naïve late and hybrid fusion setup did not outperform the imaging
aselines or TabNet. This shows that the architecture of the multimodal
etwork is very important: when tabular data was fused with imaging
ata in the naive late and hybrid fusion models, it tended to overfit
n the tabular inputs. Using the featurized TabNet inputs leads to an
ncrease in performance, possibly limiting the overfitting. We also see
n increase in performance, compared to both the other modalities as
ell as the multimodal models in the literature, when using DAFT. This

hows a clear advantage for affine transformation-based data fusion
ompared to models with other fusion techniques or a single modality.
dding the featurized outputs did not lead to a further performance
ain. Here, augmenting the imaging modality and using tabular data
o affinely transform the representation of these images proved to be a
ery powerful technique even with a small sample size.

The effect of using CT perfusion does show an added benefit. It
s interesting to see that using only the summed-up perfusion maps
ielded the best performance, as this would arguably contain less
nformation than using several maps, though it is not unlikely that
sing too many different maps would lead to overfitting on such a small
ataset. We demonstrate that a combination of DAFT with CT perfusion
eads to a good performance. It should be investigated whether NCCT
cans would lead to a similar performance, as these are done on a wider
roup of CVA patients.

We believe that utilizing DAFT for predicting the functional out-
ome of stroke patients is a simple, yet effective technique that could
ven offer further improvements. As our final models only used the
ummed-up versions of the CT perfusion scans, no complex preprocess-
ng step is required to arrive at these results. We only used third-party
oftware to get the volume of the affected brain tissue. Furthermore,
ue to the modular nature of DAFT, it can be adapted to bigger
r more complex networks with more capacity to learn high-level
eatures. Additionally, the relatively small size of the network would
ake implementation in a hospital setup more feasible. Medical centers

quipped with the proper data pipelines could implement these models
or clinicians in a way that they would be able to see a prediction
n their Electronic Health Record (EHR) system as soon as they begin
he treatment of the patient. The ability to give a reliable prognosis
f recovery could enable hospitals and rehabilitation clinics to have
etter planning of resources and, more importantly, inform patients and
heir relatives of the expected functional status after discharge. This
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allows for better expectation management and it enables the patient to
partake in possible shared decision making. Moreover, we noticed that
while the global interpretability was consistent with the literature, the
local interpretability, which explained the decision for each individual
patient, often differed from the global interpretability. This could allow
for a more personalized explanation of expected functional outcome.

This study did come with a few limitations. First and foremost,
the dataset is smaller compared to other studies. While we expect our
predictive performance will go up with extension of our datasets, we
cannot show this. With a larger sample size available, it would also give
possibility to investigate the applicability of Transformer based imaging
models such as ViT, or a variant more suitable for handling smaller
datasets. We see how the TabNet outperformed the other models for
clinical modality. We had a rather limited spatio-temporal analysis of
the CT perfusion, and future studies could incorporate different maps
or image denoising [49]. We purposely relied on the available data and
software in the hospital, to improve the current process and not create
more workload for medical professionals. This also applies to several
excluded imaging based-biomarkers, such as the ASPECTS score. These
scores are not part of our care process in the hospital. In settings where
these biomarkers are collected as part of the tabular data, the clinical
model performance could increase.

Moreover, another limitation is the dichotomization of the outcome.
While this is similar to previous papers, based on our discussions
with neurologists and other medical professionals, a valuable research
direction would be to build models that can differentiate between
patients better than the favorable and unfavorable recovery. Having 3
or more distinct classes would help a better separation, provide more
specific expectations and thereby improve clinical relevance. Looking
at the distribution of our data, to predict individual mRS scores such
initiatives should collect at least 10 times more data to have enough
instances for minority classes. Finally, if clinicians want the best possi-
ble prognosis and urgency is not the most important factor, developing
models that make use of post-treatment features could further improve
predictive power. Including information like treatment success, length
of stay, and follow-up CT or CTP scans would likely provide a more
elaborate picture of the patients’ expected recovery.

7. Conclusion

This study presents a multimodal approach to predict the mRS func-
tional status of acute ischemic stroke patients based on clinical and CT
perfusion characteristics. To predict the functional outcome, we built
models to predict good outcome and treatment success (scores 0–2), or
poor outcome and treatment failure (scores 3–6). In our experiments,
our proposed method with the modified DAFT outperforms both other
methods and state-of-the-art results by achieving a 75% AUC, and 80%
F1 score. It is remarkable that we achieved this, as our final model has
less than a hundred thousand optimizable parameters, and was trained
with a dataset at least half the size of reference papers. Overall, we



Artificial Intelligence In Medicine 147 (2024) 102719B. Borsos et al.

A

h

demonstrate the feasibility of predicting the functional outcome for
ischemic stroke patients with LVOs.

Additionally, future research is needed on validating the model
performance and investigating when and how to present this infor-
mation to professionals and relatives. Overall, it is recommended to
retrain developed models when more data becomes available and to
monitor for data drift in deployed settings. Future studies may alleviate
the problem of small, imbalanced datasets with larger, multi-center
data collection initiatives where CT perfusion imaging is available. To
overcome the challenges of data sensibility, this project – and many
others in the medical field – would also be a great candidate for
implementing distributed machine learning methods, such as federated
learning [50] across horizontally or vertically partitioned datasets.
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Appendix A. Data augmentation details

To compensate for the small dataset, we used multiple augmen-
tation techniques to combat overfitting. For this, we made use of
built-in image transformations from the MONAI [48] framework. After
finetuning, data augmentation was performed on the images with the
following configurations.

• RandRotate(range_x = 0, range_y = 0, range_z = 1, prob = 0.5)
• RandZoom(min_zoom = 0.9, max_zoom = 1.1, prob = 0.4)
• RandGaussianNoise(mean = 0, std = 0.01, prob = 0.5)
• Rand3DElastic(sigma_range = (5,7), magnitude_range = (50,140),

padding_mode = ’zeros’, prob = 0.5)
• RandAdjustContrast(gamma = (1,1.5), prob = 0.5), for the multi-

modal setup only.

ppendix B. Hyperparameters

For all models we performed hyperparameter search. The finetuned
yperparameters and their best configurations are as follows:

• Random Forest: maximum depth = 5, max features = log2, min-
imum samples per leaf = 1, minimum samples per split = 10,
n_estimators = 100

• Gradient Boosting: learning rate = 0.1, criterion = friedman_mse,
maximum depth = 2, max features = log2, n_estimators = 500

• TabNet:Learning rate = 0.002, optimizer = Adagrad, decaying of
learning rate = 0.95 every 20 steps, scheduler = PyTorch’s StepLR,
momentum = 0.005. n_steps = 3, gamma = 1. Gated Linear Units:
n_shared = 2, n_independent = 5. Width: prediction layer = 8,
attention embedding layer = 30, epochs = 100

• Resnet-10: Learning rate = 0.001 (decreased by multiplying it by
0.1 and 0.05 when the number of epochs reaches 60% and 90%
respectively), optimizer = AdamW, weight decay = 0.0001, batch
size = 15, epochs = 100.

• MedicalNet: Same optimization and augmentation settings as
ResNet-10, but feature maps = 512, all layers in training mode

• Naive late fusion: epochs = 50, learning rate = 0.001, decay rate
9

= 0.0001, optimizer = AdamW, batchsize = 15
• Naive late fusion+ TabNet: epochs = 50, learning rate = 0.001,
decay rate = 0.0001, optimizer = AdamW, batchsize = 15, featurized
input normalization = None

• Hybrid fusion: epochs = 50, learning rate = 0.001, decay rate =
0.0001, optimizer = AdamW, batchsize = 15, bottleneck factor =
5

• Hybrid fusion+Tabnet: epochs = 50, learning rate = 0.001, decay
rate = 0.0001, optimizer = AdamW, batchsize = 5, bottleneck
factor = 5, featurized input normalization = None

• Daft: Bottleneck factor = 5, Location FiLM block = 0, scaling =
enabled, shifting = enabled, scaling activation = linear, probability
dropout layer = 0.3, epochs = 50, learning rate = 0.001, decay rate
= 0.0001, optimizer = AdamW, batchsize = 15

• Daft+Tabnet: Bottleneck factor = 7. Location FiLM block = 0,
scaling = enabled, shifting = enabled, scaling activation = linear,
probability dropout layer = 0.3, epoch = 50, learning rate = 0.0005,
decay rate = 0.0001, optimizer = AdamW, batchsize = 10, featurized
input normalization = None
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