
Utilisation Profiles of Bridging Function Chain for
Healthcare Use Cases

1st Jamila Alsayed Kassem
Informatics Institute, MNS group

University of Amsterdam
Amsterdam, Netherlands

j.alsayedkassem@uva.nl

2ndAdam Belloum
Informatics Institute, MNS group

University of Amsterdam
Netherlands, Amsterdam

A.S.Z.Belloum@uva.nl

3rd Tim Müller
Informatics Institute, CCI group

University of Amsterdam
Netherlands, Amsterdam

t.muller@uva.nl

4th Paola Grosso
Informatics Institute, MNS group

University of Amsterdam
Amsterdam, Netherlands

p.grosso@uva.nl

Abstract—On the road towards personalised medicine, one of
the main challenges is to enforce security and network low-level
policies to secure data-sharing. The proposed dynamic frame-
work defines the topology of the service chains to enforce network
and security policies by instantiating Virtual Network Func-
tions (VNF’s) on the fly via light-weight and easily-deployable
containers. In this paper, we profile the resource utilisation
of chained VNF’s deployed to enable data movement within
different healthcare use cases. We provide example configurations
that map to a couple of use cases (e-Health record query
and heath data streaming), then we monitor and collect CPU
utilisation of the different VNF compositions. In the considered
policies we can: discard flow, protect (encrypt) and transmit, or
allow with no protection. To enforce each policy, we deploy a
firewall function (relatively heavy-weight function), encryption
function, and a decryption function (light-weight stream cipher).
As a result, we analyse the behaviour of the VNF services with
various setups, and then we aim to further use this analysis to
build the placement heuristic according to available and trusted
clusters resources. Subsequently, we will recommend heuristic-
based placement based on collected profiling data of the resource
usage and limits for high availability, optimal performance, and
minimal resource waste.

Index Terms—Virtual Network Function, Programmable In-
frastructures, Network Policy, Resource profiling.

I. INTRODUCTION

In line with Next-generation networks, network functions

are getting increasingly virtualised and highly programmable.

Network Function Virtualisation (NFV) decouples functions;

such as packet encryption and firewalling; from specialised

hardware to make services deployable on general-use virtual

servers [1]. This allows on demand management, dynamic

shipment and placement of services, and can potentially pro-

vide reliable network performance.

NFV offers the framework to configure, chain, manage, and

orchestrate functions according to agreed network policies.

The EPI project is funded by the Dutch Science Foundation in the
Commit2Data program

Furthermore, containerising these functions can accomplish

fast deployment, high reusability, and low setup overhead

[2]. The controlled service scheduling and placement, namely

containerised NFV-based (CNFV) services, is a functionality

that aligns with what we are trying to accomplish in supporting

different health use cases. In the EPI1 project, we identify

a number of use cases that are representative of the broad

applicability of personalised medicine in the healthcare do-

main. We simulate two of the use cases by simulating different

workloads and profiling of resources:

• Use case 1: Hosting a centralised health data registry

and maintaining health data entries of different healthcare

institutions, and the user can query an entry in the dataset.

• Use case 2: Streaming data via IoT devices and wearable

to monitor the users’ health and provide timely interven-

tion.

The EPI Framework employs CNFV to implement network

service chains, and we configure the setup to adapt to different

healthcare use cases’ policies and requirements. The policies

describe the communication constraints, traffic filtering rules,

trust, and the required Network Functions that needs to be

instantiated and deployed. The framework can also be used

with use cases other than healthcare by using the same

framework’s handles to generally translate and map policies

to VNF chain. To implement the security services, we need

middle-boxes hosting the NF’s; known as proxies. The proxied

services can vary from lightweight to heavyweight functions

depending on the type of function and the implementation’s

optimisation. Moreover, the resource consumption behaviour

also depends on the expected workload whilst running a

specific use case. Hence, we need to build a profile of the

resources required under labelled use cases and the associated

network policy. Furthermore, we have to allocate sufficient

computing resources to ensure smooth deployment and high

1https://enablingpersonalizedinterventions.nl/

475

2022 IEEE 18th International Conference on e-Science (e-Science)

978-1-6654-6124-5/22/$31.00 ©2022 IEEE
DOI 10.1109/eScience55777.2022.00085

availability throughout the execution of the application. The

challenge that still remains is the optimal and adaptive place-

ment and configuration of these services to available resources

across trusted clusters of proxy nodes.

II. RELATED WORK

With similar research efforts, [3] [4] propose policy enforce-

ment systems using SDN tools (OpenFlow), to ”steer traffic”

through a policy-defined service chain. To reduce the resources

needed by the middle boxes, they define ways to optimise the

switch table sizes and flow control rules. On the other hand,

employing OpenFlow switches can potentially introduce new

challenges, such as dedicating specialised hardware and having

to configure and add SDN components to the infrastructure.

Subsequently, adding virtualisation capabilities is needed,

and resource allocation must be effectively orchestrated and

managed in order to avoid over/under-provisioning, and to

maintain end-to-end latency that are equivalent to those seen

in conventional networks. It is crucial to ensure the network

services resilience, knowing that the implementation can get

increasingly complex (like a firewalling with intensive rules,

capturing application level semantics, and potentially deep

packet inspections). According to [5], overloading middle

boxes (e.g. proxies) is a typical reason for service failure.

A plethora of work is done on NFV chaining and placement,

but different strategies are employed. As an example, the

MIDAS [6] framework places the services chain according

to the cross-border on-path strategy, where each service is

location specific (e.g. a web proxy needs to be place near

the end-client). On the other hand, when the path is loosely

controlled, then the placement really depends on the hardware

resources available, and that is implemented using varying

algorithms (e.g. the least busy host placement algorithm [7]).

Others consider QoS-driven optimisation placement of the

NFV. The used methods vary from using heuristic algorithms

[8], Linear programming, and ML-based tools (e.g. Reinforce-

ment learning).

In an effort to optimally deploy and maintain the CNFV

chains, we add with this work-in-progress to existing litera-

ture the defined deployment stages after a network policy is

formalised. The placement is decided on based on available

trusted proxy clusters matched with the profiled data, knowing

the labelled use case running. We showcase the exploratory

profiling results for designing the heuristic algorithm.

III. THE FUNCTION CHAINS DEPLOYMENT

In previous work [9], we proposed the EPI framework

(EPIF), a dynamic framework that automates the programming

of the underlying networks to secure health data-sharing. Data-

sharing is secured by orchestrating and managing CNFV;

called Bridging Functions (BF); to add security value on each

communicating node, irrespective of each node’s computing

capabilities. The BFs can be instantiated and chained to form

a Bridging Function Chain (BFC) and enforce increasingly

complex policies.

The adaptation of the underlying networks is done after

querying network policies and translating them into setup

actions, for example, party A can talk to party B if A is able to

encrypt and decrypt via a stream cipher. The automated setup

of the infrastructure is also required to achieve reachability

of the end-points nodes, optimal security across collaborating

domains, reasonable network performance, bridging services

availability, hardware selection and scalability, and ultimately,

abiding to policy requirements.
EPIF has different components that are crucial to automate

the data sharing processes between participating parties. The

main components of the framework are the application or-

chestrators, infrastructure orchestrator, the policy management

system, and the logic area generator. The two orchestrators are

decoupled (conceptually) to orchestrate and manage different

types of functions; the workflow functions, and the network

functions, respectively. The policy management system is used

as a reasoner to query policies and maintain agreement. The

logic area generator [10] is in place to assign security areas

to end nodes, and subsequently deduce security requirements

and policies. The proxy node acts as framework actor, where

the BFC pool is hosted and instantiated when ordered by the

orchestrator.
After resolving the BFC rule per source-destination flow,

the EPIF instantiates and deploys the services chain to secure

connection according to the set policy. The challenge of

optimally provisioning these services remains, and so we

define with this work three stages for optimal placement

and performance of the chain. Fig. 1 illustrates these steps,

starting with introducing a new healthcare use case with the

expected associated BFC workload. Then we start the profiling

stages where we test the setup, collect resource metrics via

the metric server, calculate statistical information, and store

the labelled data for the next stage. The Heuristic placement

queries the available trusted proxy clusters via the cluster

manager, and matches the required resources with the currently

available resources. Trust is modelled according to the node’s

competence, and the contractual agreement of the institution

it runs within. The orchestrator controls the placement of

the service chain accordingly to maximise trust and resource

utilisation. This would achieve optimal placement of BFC (or

semi-optimal, considering inaccurate profiling in case of small

number of test-runs with high standard deviations), and serves

as booster to the Q-learning agent in the next stage. Next, the

run-time maintenance utilises a Reinforcement Learning agent,

and is asked to monitor QoS metrics (latency, throughput, etc.)

and reactively scale in/out. The placement of the replicated

scaled out services can be done across the multiple trusted

proxy clusters (not just the chosen placement cluster).
A simple BFC deployment is illustrated in Fig. 2, where we

have two types of nodes:

• The master node: acting as the infrastructure orchestrator

where we can configure, deploy, and orchestrate microser-

vices

• The worker node: acting as the proxy node hosting and

running the BFC. The worker nodes are spread over two

476

Fig. 1. The BFC deployment stages after introducing a new health use case:Profiling, Heuristic placement, run-time maintenance.

different clusters A and B both running on UvA machines

in this case.

Fig. 2 also shows the example BFC implementations and the

proxy service. The proxy service has an important functional-

ity of traffic intercepting and redirecting to route through the

BFC. With that we eliminate the need to manually plan, com-

pose, and configure routes across the service chain (example:

Client −→ NF1 −→ NF2 −→ NF3 −→ Server), by introducing

the SOCKS(5|6) [11] [12] proxy that intercepts and reroutes

packets seamlessly to the end-points nodes.

We focus in this paper on the first stage, and we populate

the profile data storage with resource consumed running use

case 1 and 2.

IV. EXPERIMENTS

We design the following experiment to evaluate CPU usage

of different BF chains. We do not consider memory because

our cases do not pose a strain on the resources. That is due to

the type of functions implemented. We deploy this framework

(shown is Fig. 2) using four identical Ubuntu 18.04 VMs with

2 cores, 2 GB RAM, and 20 GB HD. In our effort to run this

in a controlled environment, we containerise all services and

orchestrate with Kubernetes. All the needed services run on

the worker nodes, and that is made available via dedicating an

external port that can be pinged and reached from outside the

node.

The SOCKS6 proxy we implement is a standard proxying

protocol for TCP and UDP connections. SOCKS6 is an op-

timised iteration of SOCKS5, and it introduces minor tweaks

to the Authentication handshake. The stateful Python-based

firewall function cross-checks the packets across a couple of

rules to either accept or reject traffic, then redirects it back to

the proxy to route to the next stop (next BF or destination).

We implemented the encryption and decryption functions with

ChaCha20 stream cipher [13]. It is a light-weight function that

improves on the Salsa algorithm [14] by increasing per-round

diffusion without decreasing the performance.

The metric server is a cluster-wide data aggregator of

resource usage and will scrape the relevant resource metrics

of each pod. We use the metric server to gather 100 samples

of the CPU usage / pod, and then calculate statistical values

(average and standard deviation error). All relevant code is

made available on GitHub2 for reproducibility purposes.

We assign a fixed CPU request and limit to all containers

of 500milliCores and 600milliCores, respectively. We run four

different configurations. The first use case is the one with

lower sending rate of 100kB/s, and we rerun this experiment

twice with 1 then 10 concurrent clients. Similarly, we also

run the same experiment with use case simulating a heavier

workload of 1000kB/s. We purposely generate traffic that

will be accepted and forwarded, because we need traffic to

propagate across the chain

V. PROFILING RESULTS

The varying composition, length, and order of the functions

within a chain can result in different CPU consumption per

pod. That is further apparent in Fig. 3, Fig. 4, Fig. 5, Fig. 6.

Considering the proxy service, the CPU utilisation does not

change across topologies. This is due to the minimal proxy’s

functionality of redirecting traffic according to the chain, and

the fact that most processing is done on the NIC (Network

Interface Card).

While as, the other services are affected by the use case

applied and the number of concurrent users using the system.

First, the firewall service has the highest CPU utilisation being

the heavier-weight function. Compared to the other topologies,

2https://github.com/epi-project/EPI-kube-scaling

477

Fig. 2. The setup of the EPI function chains at UvA with one master node as the orchestrator and the worker nodes across cluster A & B hosting the topology
of BFC.

Fig. 3. Use case 1: CPU utilisation per pod and the throughput at the end
server with one client generating 1000 kB/s traffic, and grouped by service
BFC topologies composed of encryption (E), decryption (D), and firewall (F)
services.

the consumption average is higher within the F-E-D and F

chains, and that is related to the first order of the service.

Second, the encryption and decryption services expectedly

have approximately equal CPU usage across the F-E-D and

E-D topologies. That is due to similar compiling instructions

and code implementation. Unlike with the E-F-D topology,

where the decryption service has a much lower CPU average.

This is caused by the ordering of the firewall in the middle

of the chain. This reduction is caused by the different pro-

cessing rate at the firewall, and this can differ with different

implementations (larger number of rules, code optimisation,

etc.) Furthermore, the reduction is also affecting the needed

CPU power by both services (encryption and decryption) in the

F-E-D chain. Similarly, the causing factor being the firewall

placement at the beginning of the chain.

Intuitively, the CPU utilisation of the services varies with

Fig. 4. Use case 1: CPU utilisation per pod and the throughput at the end
server with ten clients generating 1000 kB/s traffic, and grouped by service
BFC topologies composed of encryption (E), decryption (D), and firewall (F)
services.

the different use case, and increases with more clients, while

the behaviour is consistent throughout the experiments. These

values are generated automatically after initiating a profiling

stage, and this serves as an input to the next stages.

To prove the relation between the BFC topologies’ compo-

sition and the received packets’ rate reduction, we measure

packets received per second at the Socat end-server. Fig. 7

shows that the throughput reduction percentage / topology

while running the four experiments. The topology chains with

no firewall have a much higher throughput than the other

setups.

This throughput is slightly lower than having no BFC at

all. To counter this effect, we employ QoS-based scaler that

monitors the throughput across each function, and scale out

(or in) by replicating the service (horizontal scale) and place

the pods according to heuristic.

478

Fig. 5. Use case 2: CPU utilisation per pod and the throughput at the end
server with one client generating 1000 kB/s traffic, and grouped by service
BFC topologies composed of encryption (E), decryption (D), and firewall (F)
services.

Fig. 6. Use case 2: CPU utilisation per pod and the throughput at the end
server with ten clients generating 1000 kB/s traffic, and grouped by service
BFC topologies composed of encryption (E), decryption (D), and firewall (F)
services.

Fig. 7. The monitored throughput reduction profile for the different use cases
with different BFC setups

VI. CONCLUSION AND FUTURE WORK

When running healthcare use cases and data-sharing ap-

plications, it is crucial to enforce policies; namely network

and security policies. The EPI framework handles querying

policies, translating it to network functions setups, and enforce

traffic redirection through that route. The setup of these

functions is done through stages within the EPI framework:

profiling use cases, resources aware placement, run-time net-

work performance maintenance to minimise overhead and by

that minimising throughput reduction/ service.

We extend on the first stage of profiling, and we experiment

with two exemplary healthcare use cases, and collect the

resources utilised per use case, and populate the statistical

data table accordingly. Moreover, the composition of BFC

topologies also plays a role in CPU workload / service. The

BFC topology with heavier, less optimised implementations

in between services result in reduction of the received packets

rate at the next BF.

Our goal is to relate the profiling results to the applied

healthcare use case by estimating the resource usage trends,

and based on that we configure BFC service description with

expected utilisation interval. We can use this information

to assign services to trusted clusters, correlating available

resources with the consumption rate.

In this paper, we provide insights on the resource utilisation

trends across VNFs chains. Moreover, we build the handles

to monitor services’ performance, and that’s the groundwork

for the other stages of optimal deployment. We also mention

the concept of use case-based dynamic trust, and that will

be further explored and modelled in the upcoming work as

a heuristic deciding factor. In our future studies, we aim

to use these data to automatically place and the service

across trusted clusters and update its configuration. We will

also introduce the scalers to the setup. The scaler proposed

is a Q-learning-base horizontal scaler. We plan to compare

the EPI deployment’s stages and configuration methods to a

random placement on any cluster. The comparison will be done

according to the QoS performance of the service chains, packet

loss, and the deployment success rate.

We will also extend on the network orchestrator’s collab-

oration with the policy management system and application

orchestrator. This collaboration will promote high programma-

bility and automatic adaptiveness of the infrastructure. Finally,

we aim to deploy the framework with real test-beds and utilise

this by introducing real health data, and enforcing different

policies and service topologies accordingly.

REFERENCES

[1] Jun Wu, Zhifeng Zhang, Yu Hong, and Yonggang Wen, “Cloud radio
access network (c-ran): a primer,” IEEE Network, vol. 29, no. 1, pp.
35–41, 2015.

[2] Richard Cziva and Dimitrios P. Pezaros, “Container network functions:
Bringing nfv to the network edge,” IEEE Communications Magazine,
vol. 55, no. 6, pp. 24–31, 2017.

[3] John Bellessa, Evan Kroske, Reza Farivar, Mirko Montanari, Kevin
Larson, and Roy H. Campbell, “Netodessa: Dynamic policy enforcement
in cloud networks,” in 2011 IEEE 30th Symposium on Reliable
Distributed Systems Workshops, 2011, pp. 57–61.

[4] Lin Cui, Fung Po Tso, and Weijia Jia, “Heterogeneous network
policy enforcement in data centers,” in 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), 2017, pp. 552–555.

479

[5] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan, “Understanding
network failures in data centers: Measurement, analysis, and implica-
tions,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 350–361,
aug 2011.

[6] Ahmed Abujoda and Panagiotis Papadimitriou, “Midas: Middlebox
discovery and selection for on-path flow processing,” in 2015 7th
International Conference on Communication Systems and Networks
(COMSNETS), 2015, pp. 1–8.

[7] Stuart Clayman, Elisa Maini, Alex Galis, Antonio Manzalini, and Nicola
Mazzocca, “The dynamic placement of virtual network functions,” in
2014 IEEE Network Operations and Management Symposium (NOMS),
2014, pp. 1–9.

[8] Abeer A. Z. Ibrahim, Fazirulhisyam Hashim, Nor K. Noordin, Aduwati
Sali, Keivan Navaie, and Saber M. E. Fadul, “Heuristic resource
allocation algorithm for controller placement in multi-control 5g based
on sdn/nfv architecture,” IEEE Access, vol. 9, pp. 2602–2617, 2021.

[9] Jamila Alsayed Kassem, Onno Valkering, Adam Belloum, and Paola
Grosso, “Epi framework: Approach for traffic redirection through
containerised network functions,” in 2021 IEEE 17th International
Conference on eScience (eScience), 2021, pp. 80–89.

[10] Jamila Alsayed Kassem, Cees De Laat, Arie Taal, and Paola Grosso,
“The epi framework: A dynamic data sharing framework for healthcare
use cases,” IEEE Access, vol. 8, pp. 179909–179920, 2020.

[11] Marcus D. Leech, “SOCKS Protocol Version 5,” RFC 1928, Mar. 1996.
[12] Vladimir Olteanu and Dragos Niculescu, “SOCKS Protocol Version

6,” Internet-Draft draft-olteanu-intarea-socks-6-11, Internet Engineering
Task Force, Nov. 2020, Work in Progress.

[13] Yoav Nir and Adam Langley, “ChaCha20 and Poly1305 for IETF
Protocols,” RFC 7539, May 2015.

[14] Simon Josefsson, Joachim Strombergson, and Nikos Mavrogiannopou-
los, “The Salsa20 Stream Cipher for Transport Layer Security,” Internet-
Draft draft-josefsson-salsa20-tls-04, Internet Engineering Task Force,
Nov. 2013, Work in Progress.

480

