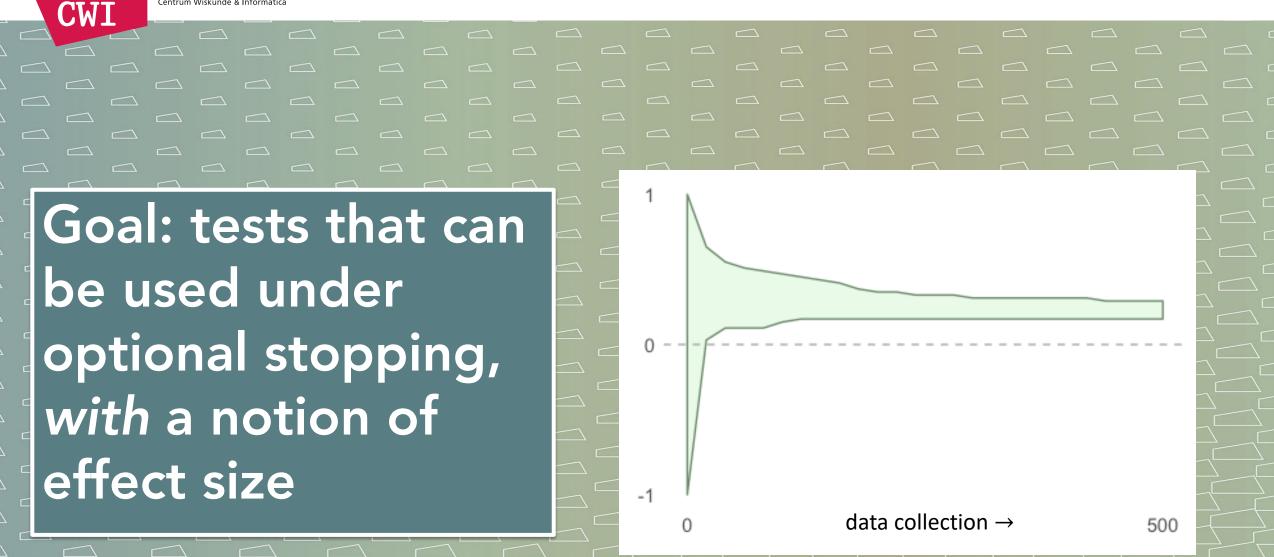
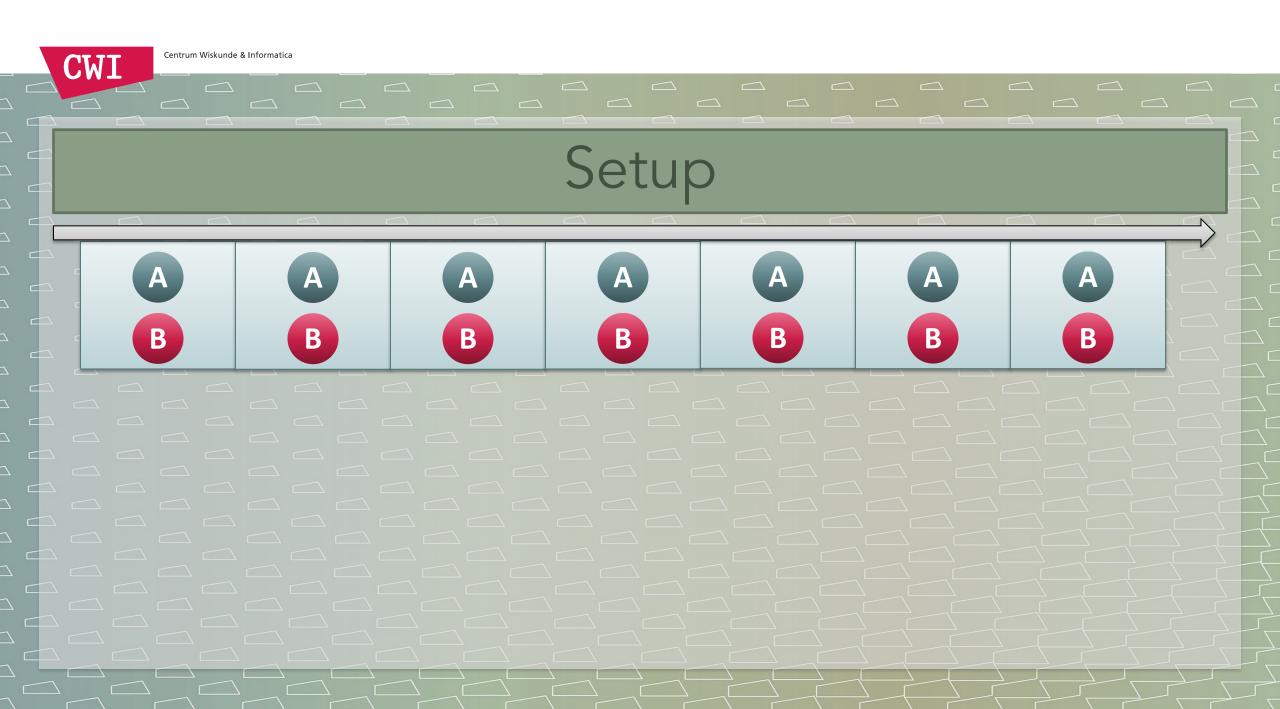
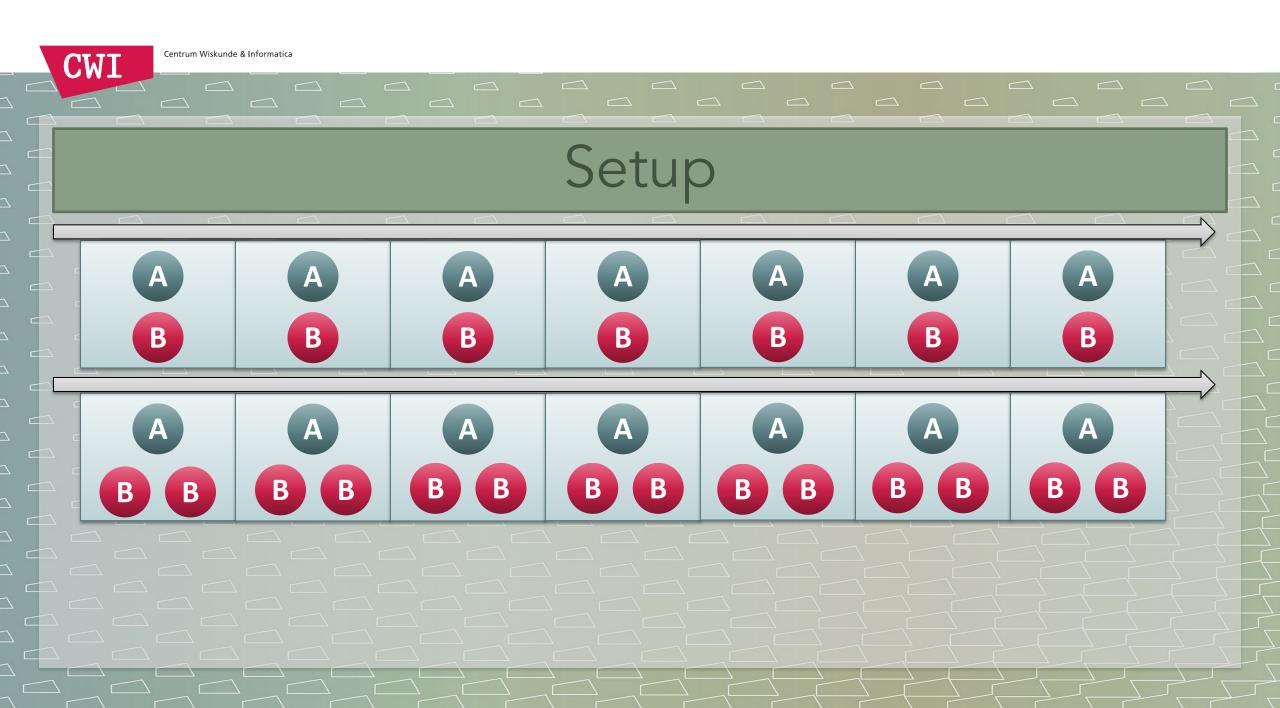
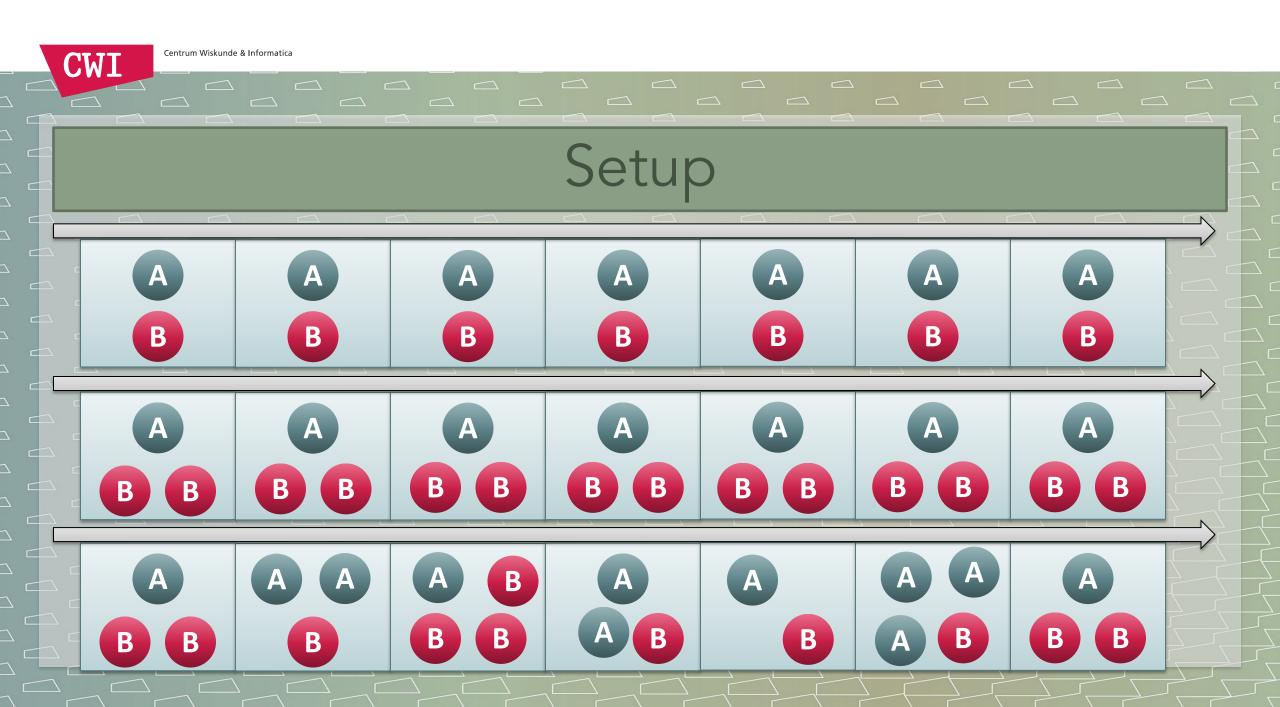
CWI


Anytime-valid Confidence Intervals for Contingency Tables and Beyond

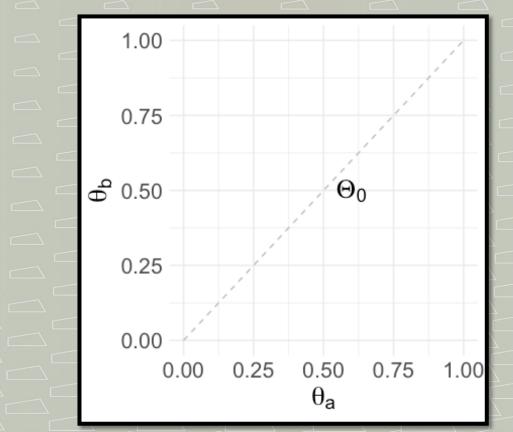

Worksop 20


nne


urner

inwald

Setup


- $\mathcal{M} = \{P_{\theta} : \theta \in \Theta\}$ general parametric model, set of prob. distrs with densities or mass functions p_{θ} for random variable Y
- Two i.i.d. data streams $Y_{1,a}$, $Y_{2,a}$, ... and $Y_{1,b}$, $Y_{2,b}$, ...
- Want to create E-variable for block of n_a outcomes in group a, n_b outcomes in group
 b:
 - $Y_{a}^{n_{a}} = (Y_{1,a}, \dots, Y_{n_{a},a}), Y_{b}^{n_{b}} = (Y_{1,b}, \dots, Y_{n_{b},b})$
- Take simple \mathcal{H}_1 indexed by (θ_a, θ_b) : likelihood is $\prod_{i=1..n_a} p_{\theta_a}(Y_{i,a}) \cdot \prod_{i=1..n_b} p_{\theta_b}(Y_{i,b})$
- Classical \mathcal{H}_0 in this setting: $\theta_a = \theta_b$, i.e. the set of distributions indexed by $\{(\theta_0, \theta_0): \theta_0 \in \Theta\}$

CW]

Running example: 2x2 contingency table setting

Do success probabilities differ between 2 strategies?

- \mathcal{H}_0 : observations $Y \in \{0,1\}$ independent of strategy $X \in \{a, b\}$
- Equivalently, when $Y_x \stackrel{i.i.d.}{\sim}$ Bernoulli (θ_x) : $\mathcal{H}_0: \theta_a = \theta_b.$

CWI

Idea through numerical optimization for finding GROW E-variable

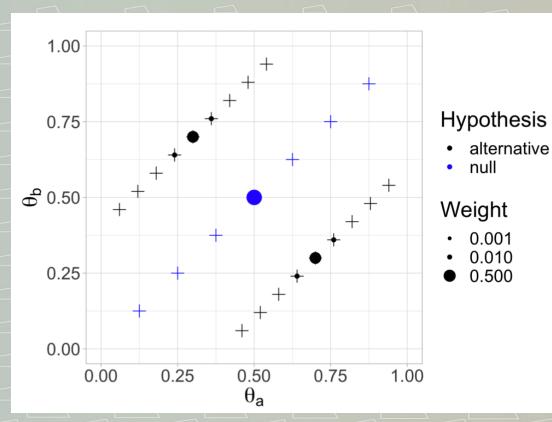


Figure 2.1a from Turner (2019), master thesis at Leiden University

Main Theorem of Turner et al. (2021)

Under no further regularity conditions, with $n = n_a + n_b$, $S^* \coloneqq \prod_{i=1..n_a} \frac{p_{\theta_a}(Y_{i,a})}{\frac{n_a}{n}p_{\theta_a}(Y_{i,a}) + \frac{n_b}{n}p_{\theta_b}(Y_{i,a})} \cdot \prod_{i=1..n_b} \frac{p_{\theta_b}(Y_{i,b})}{\frac{n_a}{n}p_{\theta_a}(Y_{i,b}) + \frac{n_b}{n}p_{\theta_b}(Y_{i,b})}$

is an e-variable for the classical \mathcal{H}_0

If $\mathcal{M} = \{p_{\theta}: \theta \in \Theta\}$ is convex, S^* is the (θ_a, θ_b) -GRO e-variable, achieving $\max_{S} \mathbf{E}_{Y_a^{n_a} \sim P_{\theta_a}, Y_b^{n_b} \sim P_{\theta_b}}[\log S]$ where the maximum is over all e-variables relative to \mathcal{H}_0

Proof sketch (i)

Let $G \in \{a, b\}$ satisfy $P(G = a) = \frac{n_a}{n}$ under both H_0 and H_1

- Apart from G there is now just 1 (not n!) RV, Y
- We observe (G, Y).
 - Under \mathcal{H}_1 , (still a simple hypothesis indexed by (θ_a, θ_b)), $Y \sim P_{\theta_G}$
 - Under \mathcal{H}_0 (still a composite hypothesis with parameter $\theta_0 \in \Theta$), $Y \sim P_{\theta_0}$ independently of G
- We will design an e-variable for this **modified testing problem** in which we randomize between observing an outcome from group a and b and then link it to our original problem in which we observe n_a and n_b of each (this proof technique may have broader applications...)

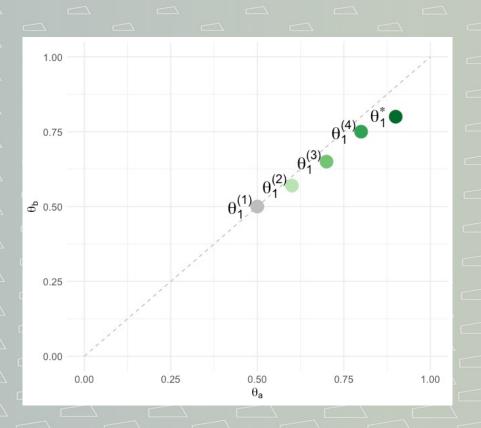
Proof sketch (ii)

Let $G \in \{a, b\}$ satisfy $P(G = a) = \frac{n_a}{n}$ under both H_0 and H_1

- We observe (G, Y).
 - Under \mathcal{H}_1 , (still a simple hypothesis indexed by (θ_a, θ_b)), $Y \sim P_{\theta_G}$
 - Under \mathcal{H}_0 (still a composite hypothesis with parameter $\theta_0 \in \Theta$), $Y \sim P_{\theta_0}$ independently of G

 $s(G,Y) := \frac{p_{\theta_G}(Y)}{\frac{n_a}{n}p_{\theta_a}(Y) + \frac{n_b}{n}p_{\theta_b}(Y)} \text{ is an e-variable, since under all distributions in the null,}$ i.e. for all $\theta_0 \in \Theta$, $\mathbf{E}_G \mathbf{E}_{Y \sim P_{\theta_0}}[s(G,Y)] = \frac{n_a}{n} \mathbf{E}_{Y \sim P_{\theta_0}}[s(a,Y)] + \frac{n_b}{n} \mathbf{E}_{Y \sim P_{\theta_0}}[s(b,Y)] = 1$

Proof sketch (iii)


We thus have $\frac{n_a}{n} \mathbf{E}_{Y \sim P_{\theta_0}}[s(a, Y)] + \frac{n_b}{n} \mathbf{E}_{Y \sim P_{\theta_0}}[s(b, Y)] = 1$. **Young's inequality** now gives $(\mathbf{E}_{Y \sim P_{\theta_0}}[s(a, Y)])^{n_a} \cdot (\mathbf{E}_{Y \sim P_{\theta_0}}[s(b, Y)])^{n_b} \leq 1(*)$ In original problem, we observe $n_a Y_a$'s and $n_b Y_b$'s. We need to show

$$S^* \coloneqq \prod_{i=1}^{n_a} \frac{p_{\theta_a}(Y_{i,a})}{\frac{n_a}{n} p_{\theta_a}(Y_{i,a}) + \frac{n_b}{n} p_{\theta_b}(Y_{i,a})} \cdot \prod_{i=1}^{n_b} \frac{p_{\theta_b}(Y_{i,b})}{\frac{n_a}{n} p_{\theta_a}(Y_{i,b}) + \frac{n_b}{n} p_{\theta_b}(Y_{i,b})}$$

is an e-variable. Using first independence and then (*) we get

$$\mathbf{E}_{Y^{n} \sim P_{\theta_{0}}}\left[S^{*}\right] = \left(\mathbf{E}_{Y \sim P_{\theta_{0}}}\left(\frac{p_{\theta_{a}}(Y)}{\frac{n_{a}}{n}p_{\theta_{a}}(Y) + \frac{n_{b}}{n}p_{\theta_{b}}(Y)}\right)\right)^{n_{a}} \cdot \left(\mathbf{E}_{Y \sim P_{\theta_{0}}}\left(\frac{p_{\theta_{b}}(Y)}{\frac{n_{a}}{n}p_{\theta_{a}}(Y) + \frac{n_{b}}{n}p_{\theta_{b}}(Y)}\right)\right)^{n_{b}} \leq 1$$

Estimate (θ_a , θ_b) based on past blocks

- Allowed to estimate(θ_a, θ_b) for each new data block, based on past data
 - Maximum likelihood
 - MAP estimator
 - Posterior mean, ...
- Restrict search space based on expert knowledge

CWI

Simulated example: 2x2 E-values vs classical counterpart

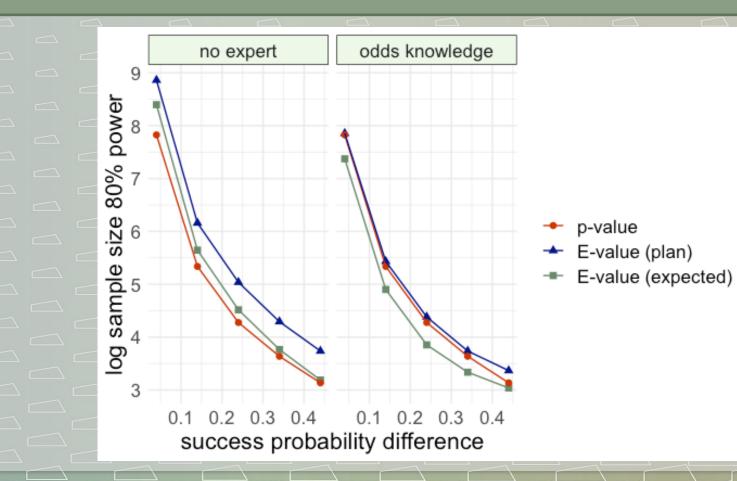
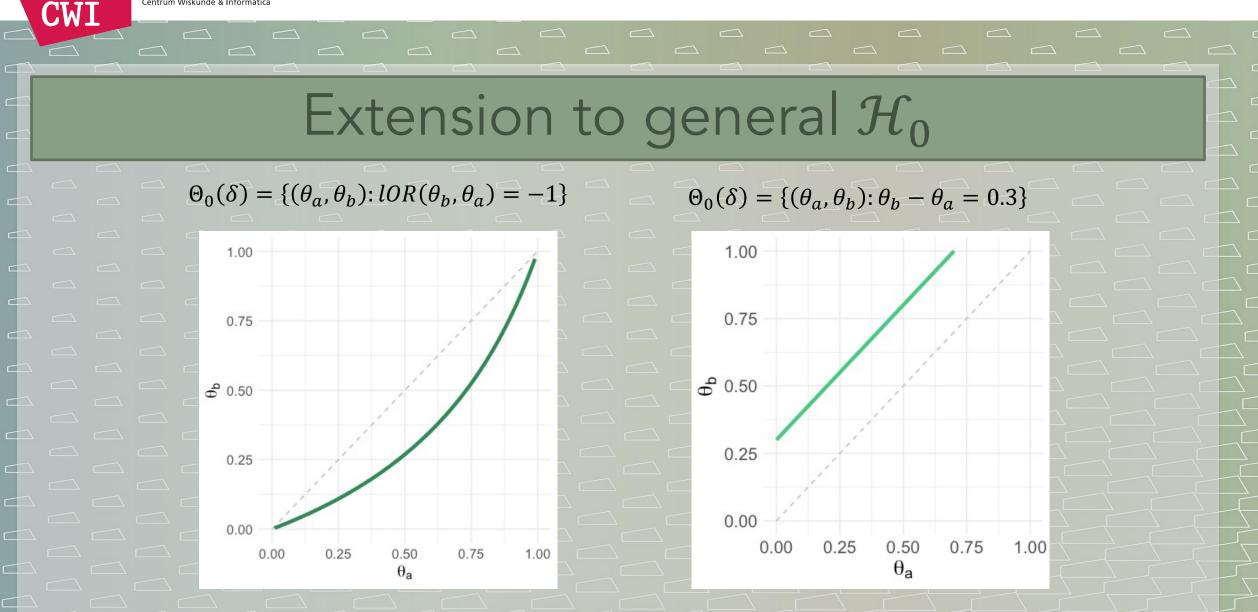



Figure adapted from Turner et al., 2021, figure 4

E-variable for two-stream data, general \mathcal{H}_0

Theorem (Turner and Grünwald, 2022): $S_{\Theta_{0}}(Y^{(1)}) \coloneqq \prod_{i=1}^{n_{a}} \frac{p_{\widehat{\theta}_{a}}(Y_{i,a})}{p_{\theta_{a}^{\circ}}(Y_{i,a})} \prod_{i=1}^{n_{b}} \frac{p_{\widehat{\theta}_{b}}(Y_{i,b})}{p_{\theta_{b}^{\circ}}(Y_{i,b})}, \text{ where } (\theta_{a}^{\circ}, \theta_{b}^{\circ}) \text{ achieve}$ $\min_{(\theta_{a}, \theta_{b}) \in \Theta_{0}(\delta)} D(P_{\widehat{\theta}_{a}, \widehat{\theta}_{b}}(Y_{a}^{n_{a}}, Y_{b}^{n_{b}})|P_{\theta_{a}, \theta_{b}}(Y_{a}^{n_{a}}, Y_{b}^{n_{b}})),$

is an E-variable for $\mathcal{H}_0 \coloneqq \{P_{\theta_a,\theta_b}: (\theta_a, \theta_b) \in \Theta_0(\delta)\}$

- We will neither precisely state nor prove the general result, but give an idea of the general way that allows us to establish E-variables for general \mathcal{H}_0 / Θ_0 with $\theta_a \neq \theta_b$
- Once again, we do this for the modified problem in which we observe a single random variable rather than $n_a + n_b$ of them

General \mathcal{H}_0 : proof idea

Let $G \in \{a, b\}$ satisfy $p(a) := P(G = a) = \frac{n_a}{n}$ under both H_0 and H_1

- Apart from G there is now just 1 RV, Y
- We observe (G, Y).
 - Under \mathcal{H}_1 , (simple hypothesis indexed by (θ_a, θ_b)),
 - $p_{\theta_{a},\theta_{b}}(G,Y) := p(G)p_{\theta_{a},\theta_{b}}(Y \mid G) \text{ with } p_{\theta_{a},\theta_{b}}(Y \mid G = g) := p_{\theta_{g}}(Y)$

- Similarly under \mathcal{H}_0 (composite hypothesis with free param. $(\theta_a^*, \theta_b^*) \in \Theta_0^* \subset \Theta^2$, $p_{\theta_a^*, \theta_b^*}(G, Y) := p(G)p_{\theta_a^*, \theta_b^*}(Y \mid G)$

with $p_{\theta^*_a,\theta^*_b}(Y|G=g) := p_{\theta^*_g}(Y)$

- Let W be prior on Θ_0^* . Let $p_W(G, Y) := \int p_{\theta_a^*, \theta_b^*}(G, Y) dW(\theta_a^*, \theta_b^*)$

Then $s(G, Y) := \frac{p_{\theta_g}(Y)}{p_{W_0^*}(Y)}$ is an e-variable, where W_0^* is the RIPr of (G., De Heide, Koolen, 2019, Thm 1) of P_{θ_a, θ_b} onto Θ_0^*

General \mathcal{H}_0 : proof idea

Theorem (Turner and Grünwald, 2022):

$$S_{\Theta_0}(Y^{(1)}) \coloneqq \prod_{i=1}^{n_a} \frac{p_{\widehat{\theta}_a}(Y_{i,a})}{p_{\theta_a^{\circ}}(Y_{i,a})} \prod_{i=1}^{n_b} \frac{p_{\widehat{\theta}_b}(Y_{i,b})}{p_{\theta_b^{\circ}}(Y_{i,b})}, \text{ where } (\theta_a^{\circ}, \theta_b^{\circ}) \text{ achiev}$$
$$\min_{(\theta_a, \theta_b) \in \Theta_0(\delta)} D(P_{\widehat{\theta}_a, \widehat{\theta}_b}(Y_a^{n_a}, Y_b^{n_b}) | P_{\theta_a, \theta_b}(Y_a^{n_a}, Y_b^{n_b})),$$

is an E-variable for $\mathcal{H}_0 \coloneqq \{P_{\theta_a, \theta_b} : (\theta_a, \theta_b) \in \Theta_0(\delta)\}$

• It turns out that $s(G,Y) := \frac{p_{\theta_g}(Y)}{p_{W_0^*}(Y)}$ reduces to the previous construction for the classical \mathcal{H}_0

- It can once again be linked to an E-variable in the original problem
- In the Bernoulli case, with convex Θ_0 , we then get the stated result.

Anytime-valid confidence sequences

Goal: confidence sequence CS with coverage at level $(1 - \alpha)$:

$$-P_{\theta_a,\theta_b}(\text{ for any } m = 1, 2, ... : \delta(\theta_a, \theta_b) \notin CS_{(m)}) \leq \alpha$$

 $-\delta(\theta_a, \theta_b)$: arbitrary notion of effect size

• Construct
$$CS_{\alpha,(m)} = \left\{ \delta : S_{\Theta_0(\delta)}^{(m)} \leq \frac{1}{\alpha} \right\}$$

• Gives desired coverage because $S_{\Theta_0(\delta)}^{(m)}$ is an E-variable and offers Type-I error guarantee at level α

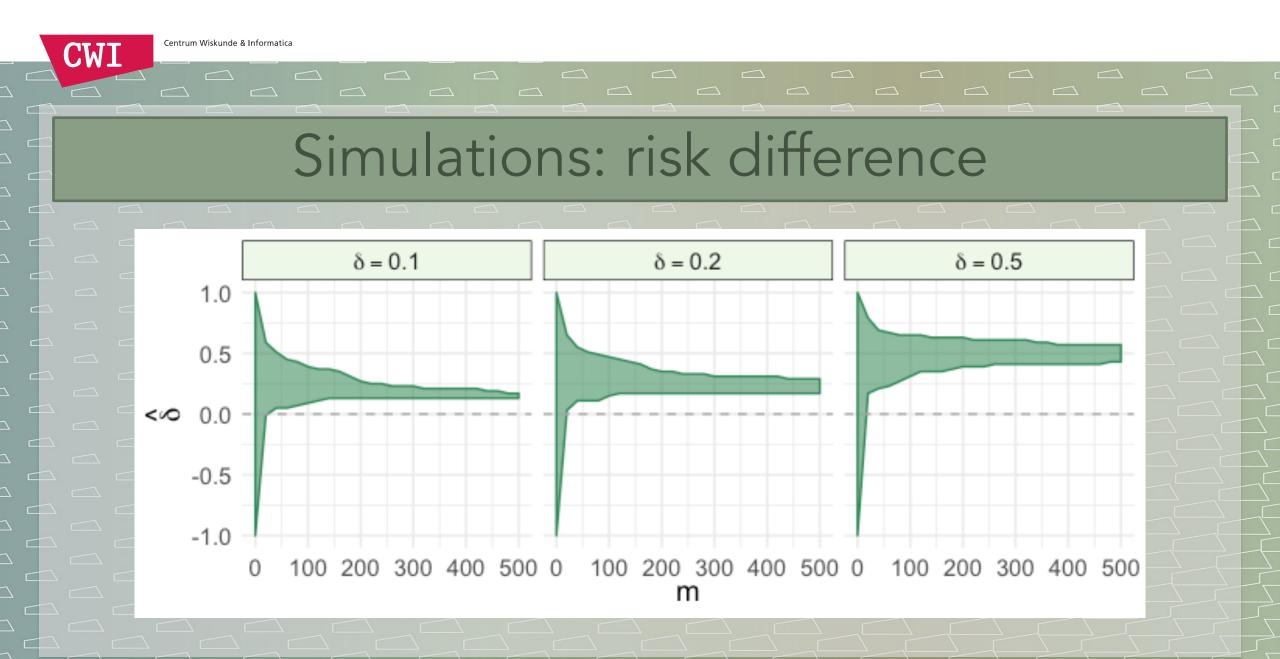
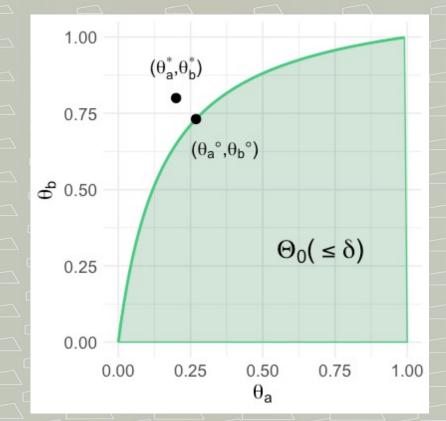
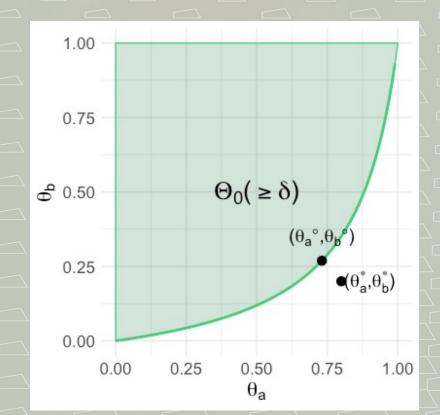


Figure adapted from Turner et al., 2022

CWI


Simulations: risk difference

 \neg


Tricky case: odds ratio and convexity of \mathcal{H}_0

- Need convexity of $\Theta_0(\delta)$ to construct E-variable
- δ > 0 → can estimate lower bound (see figure)
- δ < 0 → can estimate
 upper bound

Tricky case: odds ratio and convexity of \mathcal{H}_0

- Need convexity of $\Theta_0(\delta)$ to construct E-variable
- $\delta > 0 \rightarrow$ can estimate lower bound
- δ < 0 → can estimate
 upper bound (see figure)

CWI

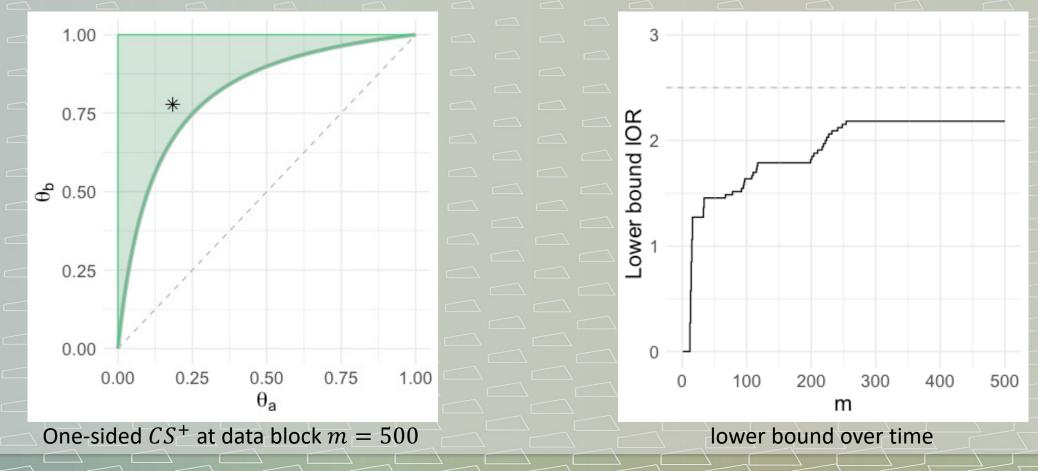


Figure adapted from Turner et al., 2022

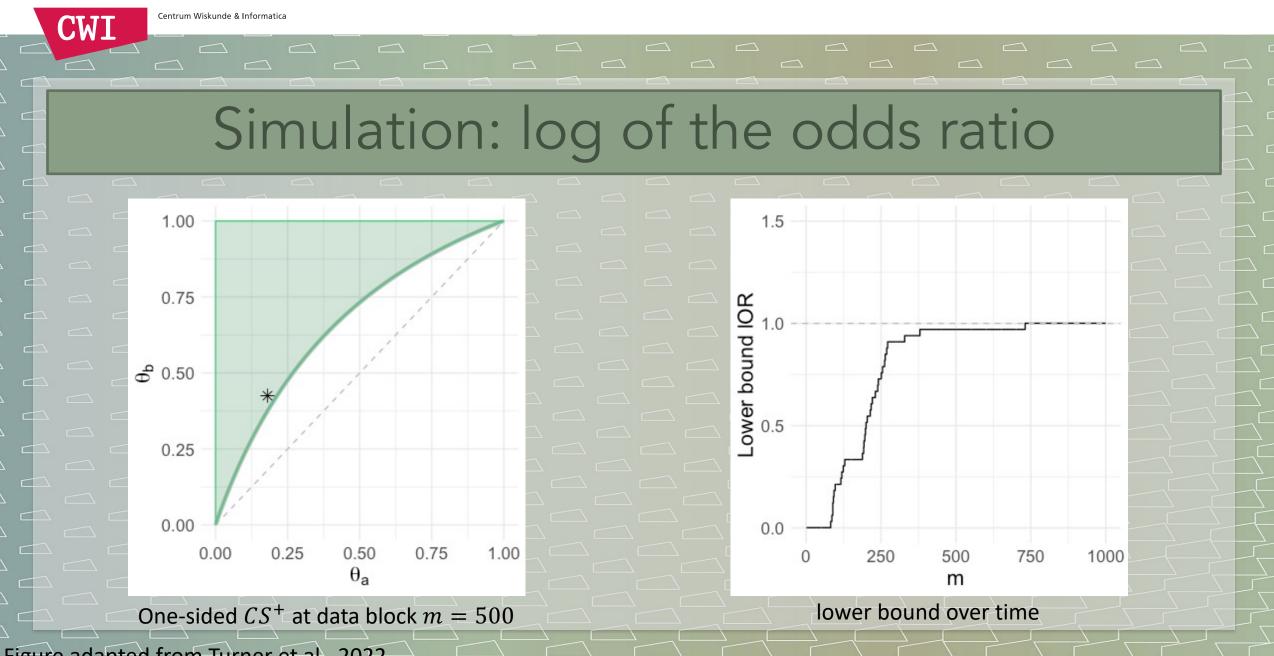


Figure adapted from Turner et al., 2022

Conclusion and novelty

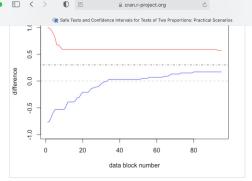
- To our knowledge, really new:
 - flexibility (block size, user-specified notions of effect size)
 - growth rate optimality: expect evidence for H1 to grow as fast as possible during data collection
- Wald's sequential probability ratio test:
 - Probability ratios can be interpreted as "alternative" E-variables
 - Not growth-rate optimal
 - Only allow for testing odds ratio effect size

CWI

Extensions

- Beyond Bernoulli: GRO property? (work by Y. Hao and others)
 Stratified data and conditional independence
 - Use case at UMC Utrecht: real-time psychiatry research and recommendations

		Strategy	
		А	В
um 1	Success	S(A1)	S(B1)
Stratum	Failure	F(A1)	F(B1)
um 2	Success	S(A2)	S(B2)
Stratum	Failure	F(A2)	F(B2)
nm 3	Success	S(A3)	S(B3)
Stratum	Failure	F(A3)	F(B3)


CWI

Further reading and references

- On the theory of E-values:
 - P.D. Grünwald, R. de Heide and W. Koolen (2019) on ArXiv:
- On implementations of E-values:
 - R.J. Turner, A. Ly and P.D. Grünwald (2021) on ArXiv:2106.02693
 - R.J. Turner and P.D. Grünwald (2022) on ArXiv:2203.09785
 - R software: <u>https://CRAN.R-project.org/package=safestats</u>

ሰ + በ

The above plot shows that after finishing our experiment, 0 is not included in the confidence interval (grey dashed ine). The true value, 0.3, remains included. The precision indicates how many difference values between -1 and 1 are checked while building the confidence sequence. It is recommended to set this value : 100 (default).

The code below can be used to check that our confidence sequence indeed offers the $1 - \alpha$ guarantee and includes the difference between the two success probabilities of 0.3 in at least 95% of simulated scenarios

print(coverageSimResult]
#> [1] 0.974