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Anytime-valid Confidence Intervals for 
Contingency Tables and Beyond



Goal: tests that can 
be used under 
optional stopping, 
with a notion of 
effect size

data collection →
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Setup
• ℳ = 𝑃": 𝜃 ∈ Θ general parametric model, set of prob. distrs with densities or mass 

functions 𝑝" for random variable 𝑌
• Two i.i.d. data streams 𝑌#,% , 𝑌&,%, … and 𝑌#,', 𝑌&,', …
• Want to create E-variable for block of 𝑛% outcomes in group 𝑎, 𝑛' outcomes in group 
𝑏 ∶
𝑌!
"! = 𝑌#,! , … , 𝑌"!,! , 𝑌%

"" = 𝑌#,% , … , 𝑌"",%

• Take simple ℋ# indexed by (𝜃%, 𝜃') : 
likelihood is ∏ !"#..%! 𝑝&! 𝑌!,( ⋅ ∏!"#..%" 𝑝&" 𝑌!,)

• Classical ℋ+ in this setting: 𝜃% = 𝜃', i.e. the set of distributions indexed by 
𝜃+, 𝜃+ : 𝜃+ ∈ Θ



Running example: 2x2 contingency table setting

Do success probabilities differ 
between 2 strategies?
• ℋ+ : observations 𝑌 ∈ {0,1}

independent of strategy
𝑋 ∈ {𝑎, 𝑏}

• Equivalently, when
𝑌, ~

....0. Bernoulli(θ,):
ℋ+: 𝜃% = 𝜃'.



Idea through numerical optimization for finding 
GROW E-variable

Figure 2.1a from Turner (2019), master thesis at Leiden University



Main Theorem of Turner et al. (2021)

If ℳ = 𝑝": 𝜃 ∈ Θ is convex, 𝑆∗ is the (𝜽𝒂, 𝜽𝒃)-GRO e-variable, achieving 
max
4

𝐄5!"!∼7#! ,5$
"$∼7#$

[log 𝑆] where the maximum is over all e-variables 

relative to ℋ+

Under no further regularity conditions, with 𝑛 = 𝑛% + 𝑛',

S∗ ≔ ∏ .8#..9!
:#! 5%,!

"!
" :#! 5%,! ;"$" :#$ 5%,!

⋅ ∏ .8#..9$
:#$ 5%,$

"!
" :#! 5%,$ ;"$" :#$ 5%,$

is an e-variable for the classical ℋ+



Proof sketch (i)

Let 𝐺 ∈ {𝑎, 𝑏} satisfy 𝑃 𝐺 = 𝑎 = %&
%

under both 𝐻& and 𝐻'
• Apart from 𝐺 there is now just 1 (not 𝒏!) RV, 𝑌
• We observe (𝐺, 𝑌).

– Under ℋ', (still a simple hypothesis indexed by (𝜃(, 𝜃))), 𝑌 ∼ 𝑃*+
– Under ℋ& (still a composite hypothesis with parameter 𝜃& ∈ Θ)  , 𝑌 ∼ 𝑃*' independently 

of 𝐺
• We will design an e-variable for this modified testing problem in which we randomize 

between observing an outcome from group 𝑎 and 𝑏 and then link it to our original problem in 
which we observe 𝑛( and 𝑛) of each (this proof technique may have broader applications…)



Proof sketch (ii)

Let 𝐺 ∈ {𝑎, 𝑏} satisfy 𝑃 𝐺 = 𝑎 = %&
%

under both 𝐻& and 𝐻'
• We observe (𝐺, 𝑌).

– Under ℋ', (still a simple hypothesis indexed by (𝜃(, 𝜃))), 𝑌 ∼ 𝑃*+
– Under ℋ& (still a composite hypothesis with parameter 𝜃& ∈ Θ)  , 𝑌 ∼ 𝑃*' independently 

of 𝐺

• 𝑠 𝐺, 𝑌 :=
,() -

*&
* ,(& - .*+* ,(+ -

is an e-variable, since under all distributions in the null, 

i.e. for all 𝜃& ∈ Θ,  
𝐄+𝐄-∼0('[𝑠 𝐺, 𝑌 ] = %&

%
𝐄-∼0(' 𝑠 𝑎, 𝑌 + %+

%
𝐄-∼0(' 𝑠 𝑏, 𝑌 = 1



Proof sketch (iii)
We thus have %&

%
𝐄-∼0(' 𝑠 𝑎, 𝑌 + %+

%
𝐄-∼0(' 𝑠 𝑏, 𝑌 = 1 . 

Young’s inequality now gives (𝐄𝒀 ∼𝑷𝜽𝟎 𝒔 𝒂, 𝒀 )𝒏𝒂 ⋅ (𝐄𝒀 ∼𝑷𝜽𝟎 𝒔 𝒃, 𝒀 )𝒏𝒃 ≤ 𝟏(∗)

In original problem, we observe 𝑛( 𝑌(’s and 𝑛) 𝑌)’s . We need to show 

S∗ ≔ ∏ 56'
%& ,(& -0,&

*&
* ,(& -0,& .*+* ,(+ -0,&

⋅ ∏ 56'
%+ ,(+ -0,+

*&
* ,(& -0,+ .*+* ,(+ -0,+

is an e-variable. Using first independence and then (*) we get 

𝐄-*∼0(' 𝑆∗ = 𝐄-∼0('
,(& -

*&
* ,(& - .

*+
* ,(+ -

%&

⋅ 𝐄-∼0('
,(+ -

*&
* ,(& - .

*+
* ,(+ -

%+

≤ 1



Estimate (𝜃!, 𝜃") based on past blocks 
• Allowed to estimate(𝜃! , 𝜃") for 

each new data block, based on 
past data
– Maximum likelihood
– MAP estimator
– Posterior mean, …

• Restrict search space based on 
expert knowledge



Simulated example: 2x2 E-values vs classical counterpart

Figure adapted from Turner et al., 2021, figure 4



Extension to general ℋ'
Θ1 𝛿 = 𝜃! , 𝜃% : 𝜃% − 𝜃! = 0.3Θ1 𝛿 = 𝜃! , 𝜃% : 𝑙𝑂𝑅 𝜃% , 𝜃! = −1



E-variable for two-stream data, general ℋ𝟎

• We will neither precisely state nor prove the general result, but give an idea of the general way that 
allows us to establish E-variables for general ℋ! / Θ! with 𝜃" ≠ 𝜃#

• Once again, we do this for the modified problem in which we observe a single random variable rather 
than 𝑛" + 𝑛# of them

Theorem (Turner and Grünwald, 2022):

𝑆$*(𝑌
(&)) ≔ ∏()&

*+ +,-+(,.,+)

+-+∘ (,.,+)
∏()&
*0 +,-0(,.,0)

+-0
∘ (,.,0)

, where (𝜃"∘ , 𝜃#∘) achieve

min
.+,.0 ∈$*(1)

𝐷(𝑃2.+,2.0(𝑌"
*+ , 𝑌#

*0)|𝑃.+,.0(𝑌"
*+ , 𝑌#

*0)),

is an E-variable for ℋ! ≔ {𝑃.+,.0: 𝜃", 𝜃# ∈ Θ!(𝛿)}



General ℋ': proof idea
Let 𝐺 ∈ {𝑎, 𝑏} satisfy 𝑝 𝑎 := 𝑃 𝐺 = 𝑎 = "!

"
under both 𝐻1 and 𝐻#

• Apart from 𝐺 there is now just 1 RV, 𝑌
• We observe (𝐺, 𝑌).

– Under ℋ#, (simple hypothesis indexed by (𝜃! , 𝜃%)),
𝑝2!,2" 𝐺, 𝑌 : = 𝑝 𝐺 𝑝2!,2"(𝑌 ∣ 𝐺)with 𝑝2!,2" 𝑌 𝐺 = 𝑔 := 𝑝2#(𝑌)

– Similarly under ℋ1 (composite hypothesis with free param. (𝜃!∗ , 𝜃%∗) ∈ Θ1∗ ⊂ Θ4, 
𝑝2!∗ ,2"∗ 𝐺, 𝑌 := 𝑝 𝐺 𝑝2!∗ ,2"∗ (𝑌 ∣ 𝐺)

with 𝑝2∗!,2"∗ 𝑌 𝐺 = 𝑔 := 𝑝 2#∗ (𝑌)

– Let 𝑊 be prior on Θ1∗ . Let 𝑝5 𝐺, 𝑌 := ∫ 𝑝2!∗ ,2"∗ 𝐺, 𝑌 𝑑𝑊(𝜃!∗, 𝜃%∗)

Then 𝑠 𝐺, 𝑌 :=
6%# 7

6&'
∗ (7)

is an e-variable, 

where 𝑊1
∗ is the RIPr of (G., De Heide,  Koolen, 2019, Thm 1) of P2!,2"onto Θ1∗



General ℋ': proof idea

• It turns out that 𝑠 𝐺, 𝑌 :=
+-1 ,

+2*
∗ (,)

reduces to the previous construction for the classical ℋ!

• It can once again be linked to an E-variable in the original problem
• In the Bernoulli case, with convex Θ! , we then get the stated result. 

Theorem (Turner and Grünwald, 2022):

𝑆$*(𝑌
(&)) ≔ ∏()&

*+ +,-+(,.,+)

+-+∘ (,.,+)
∏()&
*0 +,-0(,.,0)

+-0
∘ (,.,0)

, where (𝜃"∘ , 𝜃#∘) achieve

min
.+,.0 ∈$*(1)

𝐷(𝑃2.+,2.0(𝑌"
*+ , 𝑌#

*0)|𝑃.+,.0(𝑌"
*+ , 𝑌#

*0)),

is an E-variable for ℋ! ≔ {𝑃.+,.0: 𝜃", 𝜃# ∈ Θ!(𝛿)}



Anytime-valid confidence sequences

• Construct 𝐶𝑆#,(&) = 𝛿: 𝑆(! )
& ≤ *

#

• Gives desired coverage because 𝑆(! )
& is an E-variable and 

offers Type-I error guarantee at level 𝛼

Goal: confidence sequence 𝐶𝑆 with coverage at level (1 − 𝛼):
– 𝑃"!,"$ for any 𝑚 = 1, 2,… ∶ 𝛿 𝜃%, 𝜃' ∉ 𝐶𝑆 [ ≤ 𝛼
– 𝛿 𝜃%, 𝜃' : arbitrary notion of effect size



Simulations: risk difference

Figure adapted from Turner et al., 2022



Simulations: risk difference



Tricky case: odds ratio and convexity of ℋ'

• Need convexity of Θ+ 𝛿 to 
construct E-variable

• 𝛿 > 0 → can estimate lower 
bound (see figure)

• 𝛿 < 0 → can estimate 
upper bound

Figure adapted from Turner et al., 2022



Tricky case: odds ratio and convexity of ℋ'

• Need convexity of Θ+ 𝛿 to 
construct E-variable

• 𝛿 > 0 → can estimate lower 
bound

• 𝛿 < 0 → can estimate 
upper bound (see figure)

Figure adapted from Turner et al., 2022



Simulation: log of the odds ratio

One-sided 𝐶𝑆: at data block 𝑚 = 500 lower bound over time

Figure adapted from Turner et al., 2022



Simulation: log of the odds ratio

One-sided 𝐶𝑆: at data block 𝑚 = 500 lower bound over time

Figure adapted from Turner et al., 2022



Conclusion and novelty

• To our knowledge, really new: 
– flexibility (block size, user-specified notions of effect size)
– growth rate optimality: expect evidence for H1 to grow as fast as possible during 

data collection

• Wald’s sequential probability ratio test:
– Probability ratios can be interpreted as “alternative” E-variables 
– Not growth-rate optimal
– Only allow for testing odds ratio effect size



Extensions
Strategy

A B

St
ra

tu
m

 1 Success S(A1) S(B1)

Failure F(A1) F(B1)

St
ra

tu
m

 2 Success S(A2) S(B2)

Failure F(A2) F(B2)

St
ra

tu
m

 3 Success S(A3) S(B3)

Failure F(A3) F(B3)

• Beyond Bernoulli: GRO property? 
(work by Y. Hao and others)

• Stratified data and conditional 
independence 
• Use case at UMC Utrecht: 

real-time psychiatry research 
and recommendations



Further reading and references

• On the theory of E-values:
– P.D. Grünwald, R. de Heide and W. Koolen (2019) on ArXiv:

• On implementations of E-values:
– R.J. Turner, A. Ly and P.D. Grünwald (2021) on ArXiv:2106.02693
– R.J. Turner and P.D. Grünwald (2022) on ArXiv:2203.09785
– R software: https://CRAN.R-project.org/package=safestats

In R console:
install.packages(“safestats”)


