Safe Tests and Always-Valid Confidence Intervals for contingency tables and beyond

Rosanne Turner¹,², Alexander Ly¹,³, and Peter Grünwald¹,⁴

¹CWI, Amsterdam.
²University Medical Center Utrecht, Brain Center.
³University of Amsterdam, Department of Psychology.
⁴Leiden University, Department of Mathematics.

June 8, 2021

Abstract

We develop E-variables for testing whether two data streams come from the same source or not, and more generally, whether the difference between the sources is larger than some minimal effect size. These E-variables lead to tests that remain safe, i.e. keep their Type-I error guarantees, under flexible sampling scenarios such as optional stopping and continuation. We also develop the corresponding always-valid confidence intervals. In special cases our E-variables also have an optimal ‘growth’ property under the alternative. We illustrate the generic construction through the special case of 2×2 contingency tables, where we also allow for the incorporation of different restrictions on a composite alternative. Comparison to p-value analysis in simulations and a real-world example show that E-variables, through their flexibility, often allow for early stopping of data collection, thereby retaining similar power as classical methods.

1 Introduction

We develop tests and confidence intervals that are robust under flexible sampling scenarios, in which one is allowed to engage in optional continuation and optional stopping. We focus on the setting with data coming from two groups, the goal being to find out whether the underlying distributions are the same (testing) or assess the effect size by which they differ (estimation).

Our methodology is based on the notions of E-variables and test martingales. While to some extent going back as far as Darling and Robbins [1967], interest in these concepts has exploded only very recently, in part in relation to the ongoing replicability crisis in

*CWI is the National Research Institute for Mathematics and Computer Science in the Netherlands.
the applied sciences [Howard et al., 2021, Ramdas et al., 2020, Vovk and Wang, 2021, Shafer, 2021, Grünwald et al., 2019, Pace and Salvan, 2019, Manole and Ramdas, 2021].

We collect samples from two distinct groups, denoted a and b. In the general set-up we assume that in both groups, data come in sequentially — even though, as explained underneath (1.1) below, our approach can also be fruitfully used in the fixed design case — and are i.i.d. We thus have two data streams, $Y_{1,a}, Y_{2,a}, \ldots$ i.i.d. $\sim P_{\theta_a}$ and $Y_{1,b}, Y_{2,b}, \ldots$ i.i.d. $\sim P_{\theta_b}$ where we assume that $\theta_a, \theta_b \in \Theta$, $\{P_{\theta} : \theta \in \Theta\}$ representing some parameterized underlying family of distributions, all assumed to have a probability density or mass function denoted by p_{θ} on some outcome space \mathcal{Y}. We will use notation $P(\theta_a, \theta_b)$ (density $p(\theta_a, \theta_b)$) to represent the joint distribution of both streams. We first consider the testing scenario, in which the null hypothesis H_0 expresses that $\theta_a = \theta_b$ and the alternative H_1 expresses that $d(\theta_a, \theta_b) > \delta$ for some divergence measure d and some effect size $\delta \geq 0$. We design a family of tests for this scenario that preserve type-I error guarantees under optional stopping. Hence, if the level α-test is performed and the null hypothesis holds true, the probability that the null will ever be rejected is bounded by α.

While our tests can be implemented for arbitrary $\{P_{\theta} : \theta \in \Theta\}$, we extensively illustrate them on a simple, classical problem: 2×2 contingency tables. We provide simulations showing that if a standard fixed-design method for this scenario, the p-value resulting from Fisher’s exact test, is (ab)used with optional stopping, the type-I error blows up; in contrast, our tests retain type-I error guarantee while, due to the optional stopping, having power competitive with Fisher’s p-value.

Our test depends on the choice of a prior distribution on the alternative $H_1 = \{P_{(\theta_a, \theta_b)} : (\theta_a, \theta_b) \in \Theta_1\}$ with $\Theta_1 \subset \{(\theta_a, \theta_b) : \theta_a, \theta_b \in \Theta\}$. The choice of prior does not affect the type-I error safety guarantee, hence it is fine, even from a frequentist point of view, if such a prior is chosen based on vague prior knowledge. Still, the prior affects how fast one will tend to reject the null if it is indeed false. For the case that no clear prior knowledge is available, one may use the prior that is optimal in terms of worst-case power or the related GRO criterion (definition in Section 1.1). We provide extensive simulations indicating what prior has optimal behaviour in a worst-case sense.

We next extend our test to completely general null hypotheses, in which H_0 may also contain distributions with $\theta_a \neq \theta_b$. This extension is needed to construct always-valid confidence intervals [Howard et al., 2021, Manole and Ramdas, 2021]. We explicitly give such intervals for the 2×2 setting. E-variables, safe tests and AV confidence intervals for the 2×2 setting have been implemented in the R package [Ly et al., 2020].

E-Variable Perspective; Block-wise Approach; Optional Continuation In its simplest form, an E-variable is a nonnegative random variable S such that under all distributions P in the null hypothesis,

$$\mathbb{E}_P[S] \leq 1.$$ (1.1)

Our test works by first designing E-variables for a single block of data, and then later extending these to sequences of blocks $Y_{(1)}, Y_{(2)}, \ldots$ by multiplication. A block is a set of data consisting of n_a outcomes in group a and n_b outcomes in group b, for some
pre-specified n_a and n_b. The n_a and n_b used for the j-th block $Y(j)$ are allowed to depend on past data, but they must be fixed before the first observation in block j occurs (this rule can be loosened to some extent, see Section 2.1).

At each point in time, the running product of block E-variables observed so far is itself an E-variable, and the random process of the products is known as a test martingale. An E-variable-based test at level α is then a test with, in combination with any stopping rule τ, reports ‘reject’ if and only if the product of E-values corresponding to all blocks that were observed so far and have already been completed, is larger than $1/\alpha$. The definition of τ may, and often will, be unknown to the user — the user only needs to get the signal to stop and can then report the product E-variable. We note though that if one stops ‘in the middle’ of an as-yet incomplete block, the data of that last block cannot yet be taken into account. A classical paired one-sample test corresponds to the special case with $n_a = n_b = 1$ and data coming in in the order a,b,a,b,\ldots.

We can combine E-variables from different trials that share a common null (but may be defined relative to a different alternative) by multiplication, and still retain type-I error control. If we used p-values rather than E-variables we would have to resort to e.g. Fisher’s method for combining p-values, which, in contrast to multiplication of e-values, is invalid if there is a dependency between the (decision to perform) tests. With E-variables, such dependencies pose no problems for error control. Thus, in our setting, even if the design (i.e. n_a and n_b) is fixed in advance and optional stopping plays no role, we might still want to use the E-variable based tests described in this paper rather than a classic p-value based approach, since it allows us to do optional continuation over many experiments/studies while keeping type-I error control.

E-variables and test martingales are explained in more detail in Section 1.1 below, but we refer to Grünwald et al. [2019] (GHK from now on) for an extensive introduction to E-variables, their use in ‘optional continuation’ over several studies, and their enlightening betting interpretation (indeed, e-values are also known under the name betting scores Shafer [2021]). The general story that emerges from papers such as Shafer’s as well as GHK and Vovk and Wang [2021] Ramdas et al. [2020] is that E-variables and test martingales are the ‘right’ generalization of likelihood ratios to the case that both H_0 and H_1 can be composite and combination of data from several trials may be required.

Relevance of the 2 × 2 application Even in this age of big data and huge models, the lowly 2 × 2 model is still used as heavily as ever in clinical trials, psychological studies and so on — areas heavily plagued by the reproducibility crisis [Pace and Salvan 2019]. In a by-now notorious questionnaire [John et al. 2012], more than 55% of the interviewed psychologists admitted to the practice of ‘adding data until the results look good’. While classical methods lose their type-I error guarantee if one does this (Figure 2 in Section 5), our E-value based tests allow for it, while, due to the option of stopping early, remaining competitive in terms of sample sizes needed to obtain a desired power. We illustrate the practical advantage of our test in Section 6 using the recent real-world example of the SWEPIS trial which was stopped early for harm [Wennerholm et al. 2019]. Their analysis being based on a p-value (by definition designed for fixed sampling plan), the
question whether there was indeed sufficient evidence available to stop early is very hard to answer, since the sampling plan was not followed so that the *p*-value that led them to stop was by definition incorrectly calculated. This also makes it very difficult to combine the test results with results from earlier or future data while keeping anything like error control. We show that with our *E*-value based methodology we would have obtained sufficient evidence to stop for harm after the same number of events had occurred. Additionally, this *E*-value, even though based on a stopped trial, can be effortlessly combined with *E*-values from other trials while retaining error guarantees.

An additional advantage of focusing on the 2×2 setting is that it is arguably the simplest and clearest example in which there is a nuisance parameter (the proportion under the null) that does not admit a group invariance. Nuisance parameters that satisfy such an invariance (such as the variance in the *t*-test, or the grand mean in the two-sample *t*-test) are quite straightforward to turn into *E*-variables and test martingales via the method of maximal invariants, as explained by GHK and already put into practice by e.g. [Robbins 1970, Lu 1976]. The present paper shows that the proportion under the null can also be handled in a clean and simple manner.

Finally, as explained below, our work appears to be quite different from existing sequential and Bayesian approaches. Thus, more than 85 years after the lady tasting tea, we are able to still say something quite new about the age-old problem of contingency table testing.

Related Work Sequential tests for the 2×2 setting that can be turned into test martingales (and would then be safe to use under optional stopping) have been suggested before [Barnard 1946, Siegmund 2013, Section V.2]. Yet, such earlier tests were based either on generalized likelihood ratios (which in general do not satisfy (1.1), hence they do not provide *E*-variables) or on skipping data points in which both groups have the same outcomes, which can be wasteful. Our *E*-variable based tests are entirely different in nature, and, in contrast to earlier approaches, are all *exact and nonasymptotic*. In fact our tests are more closely related to, yet still different from, Bayes factor tests: in the case of simple null hypotheses, *E*-variable based tests coincide with Bayes factors [GHK]. However, in the 2×2 setting the null is not simple, and while the Bayes factor is a ratio of two Bayes marginal likelihoods, our *E*-variables are ratios of more general, ‘prequential’ likelihood ratios. In some special cases, the numerator is still a Bayes marginal likelihood, but the denominator, in the 2×2 setting, almost never is. Thus, while similar in ‘look’, our approach is in the end quite different from the default Bayes factors for tests of two proportions that were proposed by [Kass and Vaidyanathan 1992] and by [Jamil et al. 2017], the latter based on early work by [Gunnel and Dickey 1974]. To illustrate, in Appendix C we show that none of the variants of the Gunel-Dickey Bayes factor that are applicable in our set-up yield valid *E*-variables.

Another, very recent, approach that bears some similarity to ours are the two-sample tests from [Manole and Ramdas 2021]. They focus on a nonparametric setting and (in addition to many related results) provide always-valid tests and confidence intervals that avoid the block structure and thus allow stopping at any sample size. Their test
1.1 \(E\)-Variables and Test Martingales, Safety and Optimality

martingales satisfy optimality properties as the sample size gets large. Instead, we focus on the parametric case and, for this case, manage to derive \(E\)-variables that are equal to or closely approximate the optimal (as measured according to the GRO criterion) \(E\)-variables, thus optimizing for the small-sample case (in principle, our tests could be used in a nonparametric setting as well, but since they rely on using a prior on the alternative, the test martingales of [Manole and Ramdas 2021] might be easier to use in that case). Another general nonparametric two-sample approach with a sequential flavour (but without the AV guarantees) is [Lhéritier and Cazals 2018].

Contents In the remainder of this introductory section, we formally introduce \(E\)-variables, optional stopping and the concept of GRO-optimality. In Section 2, we will then propose almost GRO-optimal \(E\)-variables for tests of two streams in general. In Sections 3 and 4 we specifically show how our general \(E\)-variables for tests of two streams could be applied in the setting of a test of two proportions, with and without prior restrictions on an alternative hypothesis. In Sections 5 and 6 we show through simulations and a real-world example comparisons of various \(E\)-variables and Fisher’s exact test with respect to power and regret. In Section 7, we extend our results to general null hypotheses and the construction of always-valid confidence sequences, and we end with a conclusion. All proofs are in Appendix A.

1.1 \(E\)-Variables and Test Martingales, Safety and Optimality

We first need to extend the notion of \(E\)-variable to random processes:

Definition 1. Let \(\{Y(j)\}_{j \in \mathbb{N}}\), with all \(Y(j)\) taking values in some set \(\mathcal{Y}\), represent a discrete-time random process. Let \(\mathcal{H}_0\) be a collection of distributions for the process \(\{Y(j)\}_{j \in \mathbb{N}}\). For all \(j \in \mathbb{N}\), let \(S(j)\) be a nonnegative random variable that is determined by \(Y(j) = (Y(1), \ldots, Y(j))\), i.e. there exists a function \(s\) such that \(S(j) = s(Y(j))\).

1. We say that \(S(j)\) is an \(E\)-variable for \(Y(j)\) conditionally on \(Y^{(j-1)}\) if for all \(P \in \mathcal{H}_0\),

\[
\mathbb{E}_P\left[S(j) \mid Y(1), \ldots, Y(j-1)\right] \leq 1.
\]

That is, for each \(y^{(j-1)} \in \mathcal{Y}^{j-1}\), all \(P_0 \in \mathcal{H}_0\), (1.1) holds with \(S = s(y(1), \ldots, y(j-1), Y(j))\) and \(P\) set to \(P_0\) if \(Y^{(j-1)} = y^{(j-1)}\).

2. If, for each \(j\), \(S(j)\) is an \(E\)-variable conditional on \(Y(1), \ldots, Y(j-1)\), then we call the process \(\{S(j)\}_{j \in \mathbb{N}}\) a conditional \(E\)-variable process relative to the given \(\mathcal{H}_0\) and \(\{Y(j)\}_{j \in \mathbb{N}}\) and we call \(\{S^{(m)}\}_{m \in \mathbb{N}}\) with \(S^{(m)} = \prod_{j=1}^{m} S(j)\) the corresponding test martingale.

Henceforth, we omit the phrase ‘relative to \(\mathcal{H}_0\) and \(\{Y(j)\}_{j \in \mathbb{N}}\)’ whenever it is clear from the context. By the tower property of conditional expectation, one verifies that for any process of conditional \(E\)-variables \(\{S(j)\}_{j \in \mathbb{N}}\), we have for all \(m\) that the product \(S^{(m)}\) is itself an ‘unconditional’ \(E\)-variable as in (1.1), i.e. \(\mathbb{E}_P[S^{(m)}] \leq 1\) for all \(P \in \mathcal{H}_0\).
1.1 E-Variables and Test Martingales, Safety and Optimality

\mathcal{H}_0. Definition 1 adapts and slightly modifies terminology from Shafer et al. [2011]. As follows from that paper, in standard martingale terminology, what we call a test martingale is a nonnegative supermartingale relative to the filtration induced by $\{Y(j)\}_{j \in \mathbb{N}}$, with starting value 1.

Safety The interest in E-variables and test martingales derives from the fact that we have type-I error control irrespective of the stopping rule used: for any test (super-)martingale $\{S(j)\}_{j \in \mathbb{N}}$, Ville’s inequality [Shafer 2021] tells us that, for all $0 < \alpha \leq 1$, $P \in \mathcal{H}_0$,

$$P(\text{there exists } j \text{ such that } S(j) \geq 1/\alpha) \leq \alpha. \quad (1.3)$$

Thus, if we measure evidence against the null hypothesis after observing j data units by $S(j)$, and we reject the null hypothesis if $S(j) \geq 1/\alpha$, then our type-I error will be bounded by α, no matter what stopping rule we used for determining j. We thus have type-I error control even if we use the most aggressive stopping rule compatible with this scenario, where we stop at the first j at which $S(j) \geq 1/\alpha$ (or we run out of data, or money to generate new data). We also have type-I error control if the actual stopping rule is unknown to us, or determined by external factors independent of the data $Y(j)$.

We will call any test based on $\{S(j)\}_{j \in \mathbb{N}}$ and a (potentially unknown) stopping time τ that, after stopping, rejects iff $S(\tau) \geq 1/\alpha$ a level α-test that is safe under optional stopping, or simply a safe test.

Example 1. Let P_0 and Q be any two distributions for the process $Y(0), Y(1), \ldots$, and let $\mathcal{H}_0 = \{P_0\}$ represent a simple null. Let $S^{(m)}$ denote the likelihood ratio for m outcomes and $S(j)$ its constituent factors, i.e.

$$S^{(m)} = \frac{q(Y^{(m)})}{p_0(Y^{(m)})} = \prod_{j=1}^{m} S(j) \quad \text{with} \quad S(j) = \frac{q(Y(j) \mid Y^{(j-1)})}{p_0(Y(j) \mid Y^{(j-1)})}$$

where $q(y(m) \mid y^{(m-1)})$ denotes the conditional density corresponding to Q and $p_0(y(m) \mid y^{(m-1)})$ the one corresponding to P_0 with respect to a common underlying measure. Then the likelihood ratio process $\{S^{(m)}\}_{m \in \mathbb{N}}$ constitutes a test martingale, and the process of conditional likelihoods $\{S(j)\}$ is a conditional E-variable process relative to \mathcal{H}_0. This can be immediately verified by directly calculating the conditional expectation of $S(j)$ given $Y^{(j-1)}$, noticing that the densities $p_0(Y(j) \mid Y^{(j-1)})$ cancel in the calculation.

GRO-Optimality, Simple \mathcal{H}_1 Just like for p-values, the definition of E-variables only requires explicit specification of \mathcal{H}_0, not of an alternative hypothesis \mathcal{H}_1. \mathcal{H}_1 becomes crucial once we distinguish between ‘good’ and ‘bad’ E-variables: E-variables have been designed to remain small, with high probability, under the null \mathcal{H}_0. But if \mathcal{H}_1 rather than \mathcal{H}_0 is true, then ‘good’ E-variables should produce evidence (grow — because the larger the E-variable, the closer we are to rejecting the null) against \mathcal{H}_0 as fast as possible. To make this precise, first consider simple (singleton) $\mathcal{H}_1 = \{Q\}$. We start with the
one-outcome setting of (1.1), i.e. we look at a single E-variable $S_{(j)}$ in isolation for a single outcome $Y_{(j)}$. Its optimality is measured in terms of

$$E_Q[\log S_{(j)}],$$

and the E-variable which maximizes this quantity among all E-variables that can be written as functions of $Y_{(j)}$ (i.e. nonnegative random variables satisfying (1.1)), assuming it exists, is called the Growth Rate Optimal E-variable for $Y_{(j)}$ relative to Q, or simply ‘Q-GRO for $Y_{(j)}$’, and denoted as $S_{\text{gro}(Q),(j)}$. More generally, E-variable $S^{(m)}$ is called growth rate optimal relative to Q for $Y^{(m)}$, or simply Q-GRO for $Y^{(m)}$, if, among all (unconditional) E-variables that can be written as a function of $Y^{(m)}$, it maximizes

$$E_Q[\log S^{(m)}].$$

We will denote this E-variable, if it exists, by $S^{(m)}_{\text{gro}(Q)}$. The larger an E-variable or test martingale tends to be under the alternative, the better it scores in the GRO sense. Of course, the same would still hold if we were to replace the logarithm by another strictly increasing function. But there are various compelling reasons for why one should take a logarithm here — see GHK and Shafer [2021]. We explore one such reason in detail in Grünwald et al. [2020]: the Q-GRO test martingale, assuming it exists (i.e. Condition 1.6 holds and data are i.i.d.), is also the test martingale which minimizes the expected number of data points needed before the null can be rejected if we use the safe test with the aggressive stopping rule described before (reject at the smallest j such that $S^{(j)} \geq 1/\alpha$). Thus, using the Q-GRO test martingale is quite analogous to employing a test that maximizes power — in Section 5 we provide some simulations to relate power to GRO. Note that we cannot directly use power in designing tests, since the notion of power requires a fixed sampling plan, which we will usually not have.

In ‘nice’ cases, the Q-GRO E-variable (1.5) for m outcomes can be obtained by multiplying the individual Q-GRO E-variables:

Proposition 1. Let $\mathcal{H}_1 = \{Q\}$ be simple and \mathcal{H}_0 be potentially composite. Suppose the following condition holds (with p the density of P):

$$\text{There exists a } P \in \mathcal{H}_0 \text{ such that } S_{(1)} = q(Y_{(1)})/p(Y_{(1)}) \text{ is an } E\text{-variable.}$$

Then $S_{(1)}$ is the only E-variable for $Y_{(1)}$ that can be written in this form (i.e. there is no $P' \neq P$ such that (1.6) holds), and $S_{(1)} = S_{\text{gro}(Q),(1)}$ is the Q-GRO E-variable for $Y_{(1)}$. A valid E-variable of this form automatically exists if \mathcal{H}_0 is simple and, more generally, if \mathcal{H}_0, restricted to a single outcome $Y_{(1)}$, is a convex set of distributions that is compact in the weak topology.

If we further assume that $Y_{(1)}, Y_{(2)}, \ldots$ are i.i.d. according to all distributions in $\mathcal{H}_0 \cup \mathcal{H}_1$, then $S^{(m)}_{\text{gro}(Q)} = \prod_{j=1}^{m} S_{\text{gro}(Q),(j)}$, i.e. the Q-GRO optimal (unconditional) E-variable for $Y^{(m)}$ is the product of the individual Q-GRO optimal E-variables.
1.1 E-Variables and Test Martingales, Safety and Optimality

If Condition \[1.6\] holds and \(Y_1, Y_2, \ldots\) are i.i.d. according to all distributions in \(\mathcal{H}_0 \cup \mathcal{H}_1\), it thus makes sense to define the Q-GRO test martingale to be the test martingale \(\langle S^{(j)}_{\text{gro}(Q)}(j) \rangle_{j \in \mathbb{N}}\). We will then have that \(S^{(j)}_{\text{gro}(Q),(j)} = s_Q(Y_{(j)})\) for a fixed function \(s_Q : \mathcal{Y} \rightarrow \mathbb{R}_0^+\). Under this condition the GRO test martingale is, in a variety of senses (see below), the optimal test martingale to use.

Example 2. [Simple \(\mathcal{H}_1\) and Simple \(\mathcal{H}_0\)] Consider \(\mathcal{H}_1 = \{Q\}\) and simple \(\mathcal{H}_0 = \{P_0\}\) and arbitrary \(Q'\) such that the \(Y_{(j)}\) are i.i.d. according to \(P,Q\) and \(Q'\). Then \(S_{(j)} = q'(Y_{(j)})/p_0(Y_{(j)})\) is an E-variable for \(Y_{(j)}\), irrespective of the definition of \(Q'\), by the same argument as in Example \[1\] By the Proposition above, the Q-GRO E-variable for \(Y_{(j)}\) is given by setting \(q' = q\). Then \(E_Q[S_{\text{gro}(Q),(j)}] = E_{Y_{(j)} \sim Q}[\log q(Y_{(j)})/p_0(Y_{(j)})]\) also coincides with the KL divergence between \(Q\) and \(P_0\).

In Section \[2\] (Theorem \[1\]) and Section \[7\] (Theorem \[2\]) we develop functions \(s_Q\) (denoted \(s(\cdot; a_0, b_0, \theta_1^*, \theta_1^*)\) there) for simple \(\mathcal{H}_1 = \{Q\}\) so that \(S_{Q,(1)} = s_Q(Y_{(1)})\) is an E-variable even though \(\mathcal{H}_0\) is composite and not convex, so that Proposition \[1\] does not apply. Since we invariably assume the \(Y_{(j)}\) are i.i.d., \(S_{Q,(j)} := s_Q(Y_{(j)})\) is an E-variable as well and with \(S_{Q}^{(m)} := \prod_{j=1}^{m} S_{Q,(j)}, \langle S_{Q}^{(m)} \rangle_{m \in \mathbb{N}}\) is a test martingale. The construction works for the general setting of two data streams discussed in the introduction, and for some special \(\mathcal{H}_0\), the \(S_{Q,(j)}\) will in fact be Q-GRO and \(\langle S_{Q}^{(m)} \rangle_{m \in \mathbb{N}}\) will be the Q-GRO test martingale. These include the \(\mathcal{H}_0\) that arise in the 2 \(\times\) 2 setting, our main application. For other \(\mathcal{H}_0\), the E-variables \(S_{Q,(j)}\) will not necessarily have the Q-GRO-property; they are designed to have \(1.5\) large, but it may be even larger for other E-variables.

GRO and Composite \(\mathcal{H}_1\) In case \(\mathcal{H}_1\) is composite, no direct analogue of the GRO-criterion for designing E-variables exists, since it is not clear under what distribution \(Q \in \mathcal{H}_1\) we should maximize \[1.5\]. In this paper, we deal with this situation by learning \(Q\) from the data in a Bayesian fashion. It is now convenient to write \(Q = \{P_0 : \theta \in \Theta_1\}\) in a parameterized manner (accordingly, henceforth we shall write \(\theta_1\)-GRO E-variable instead of \(P_{\theta_1}\)-GRO E-variable and \(S_{\text{gro}(\theta_1),(j)}\) instead of \(S_{\text{gro}(P_{\theta_1}),(j)}\)). We will assume i.i.d. data, thus, if \(\mathcal{H}_1\) were true, then data were i.i.d. \(\sim P_{\theta_1}\) for some \(\theta_1^* \in \Theta_1\). Starting with a distribution \(W\) on \(\Theta_1\), i.e. a prior, at each point in time \(j\), we determine the Bayesian posterior \(W|Y^{(j-1)}\) and use the Bayes predictive \(P_{W|Y^{(j-1)}} := \int_{\Theta_1} P_{\theta}dW(\theta | Y^{(j-1)})\) as an estimate for the ‘true’ \(P_{\theta_1}\). As is well-known, under conditions on \(W\) and \(\mathcal{H}_1\) (which, if \(\mathcal{H}_1\) is finite-dimensional parametric, are very mild), the posterior will concentrate around \(\theta^*\) and hence \(P_{W|Y^{(j-1)}}\) will resemble \(P_{\theta_1}\) more and more, with very high probability, as more data becomes available.

At each point in time \(j\), we use our current estimate \(P_{W|Y^{(j-1)}}\) to design a conditional E-variable \(S_{(j)}\). On an informal level, as long as \(P_{W|Y^{(j-1)}}\) converges to the ‘true’ \(P_{\theta_1}\), the \(S_{(j)}\) will in fact also start to more and more resemble the E-variables \(S_{\text{gro}(\theta^*_1),(j)}\) we designed for \(\mathcal{H}_1 = \{P_{\theta_1}^*\}\) and which were designed to have a large expected growth under the ‘true’ \(P_{\theta_1}\). Assuming the convergence happens fast, we may expect that the test martingale \(\prod_{j=1}^{m} S_{(j)}\) grows not much slower than \(S_{\text{gro}(\theta^*_1)}^{(m)} = \prod_{j=1}^{m} S_{\text{gro}(\theta^*_1),(j)}\), the best test martingale we could have used if we had known the true \(P_{\theta_1}\) all along.
Generalized GROW; prior knowledge on subset of Θ_1 What if we do not have prior information that is crisp enough to be represented as a prior? First, we note that, even if the prior assumptions encapsulated in the particular W_1 turn out to match the data very badly, we still have our type-I error guarantee (Safety First!) — we will only suffer in the sense that, if H_0 is false, we will need more data to find out (less GRO/power). So in that sense, we are ‘safe’ irrespective of the prior we use. Nevertheless, if no clear prior knowledge is available we may want to take E-variables designed to satisfy some minimax criterion.

Specifically, GHK proposed the GROW (growth-optimal in worst-case) criterion, which maximizes $\log S$ in the worst case, over all distributions in some subset of \mathcal{H}_1. Here we will use a generalization of this criterion. The unconditional ℓ-GROW E-variable for $Y^{(m)}$, if it exists, is the E-variable $S^{(m)}$ that achieves

$$
\max_{S^{(m)}} \min_{\theta \in \Theta_1} \mathbb{E}_{Z \sim P_0}[\log S^{(m)} - \ell(\theta, Y^{(m)})],
$$

(1.7)

the maximum being over all unconditional E-variables defined on the first m outcomes. GHK only considered the special version without $\ell(\theta, z)$ (or equivalently, with $\ell(\theta, z)$ constant). This GROW criterion can be understood as giving the E-variable that grows fastest under the worst possible distribution in Θ_1: for this to have a useful solution other than the trivial $S \equiv 1$ it is necessary that Θ_1 is separated from Θ_0. Turner [2019] and Adams [2020] managed to define GROW E-variables for the 2×2 setting and experimented with them, but the results are not competitive with the different choice of ℓ that we now describe (in fact, their experimental results prompted us to rethink the appropriate form of $\ell(\theta, Y^{(m)})$).

We will instead mostly be interested in the choice $\ell(\theta, Y^{(m)}) = \log S^{(m)}_{\text{Gro}(\theta^*_1)}$, thereby aiming for the E-variable that maximizes relative growth, compared to the fastest growing E-variable that one could use if one had oracle access to the particular $P_{\theta^*_1}$ according to which data were sampled, if H_1 were true. This criterion leads to nontrivial E-variables even if Θ_1 and Θ_0 are not separated. We thus seek for the E-variable that minimizes, over all unconditional E-variables $S^{(m)}$ defined as functions of $Y^{(m)}$,

$$
\text{REGRET}(S^{(m)}) := \max_{\theta^*_1 \in \Theta_1} \mathbb{E}_{Y^{(m)} \sim P_{\theta^*_1}}[\log S^{(m)}_{\text{Gro}(\theta^*_1)} - \log S^{(m)}],
$$

(1.8)

where we exchanged signs, \max, \min for convenience so as to make the discrepancy REGRET positive rather than negative.

One way to understand (1.8) is as follows: the optimal expected GROWth we could have obtained when observing exactly m data points, had we known the ‘true’ θ^*_1 is given by $S^{(m)}_{\text{Gro}(\theta^*_1)}$. Using the $S^{(m)}$ minimizing (1.8), we effectively ‘learn’ θ^*_1 instead, but we seek to minimize the loss of growth for not knowing θ^*_1 right away in a worst-case sense.

In practice though, we are not concerned with a single sample size m and E-variable $S^{(m)}$ but rather a random process with associated test martingale $\{M^{(m)}\}_{m \in \mathbb{N}}$. In general, the process $\{S^{(m)}\}_{m \in \mathbb{N}}$ where each m minimizes (1.8) among all E-variables does not give a martingale [Grunwald et al., 2019]. Additionally, directly optimizing (1.8) is...
very difficult. Thus, we shall simply use test martingales based on priors \(W_1 \) on \(\Theta_1 \) for different priors \(W_1 \), and compare them by the size of (1.8) for various \(m \), preferring \(W_1 \) for which \(\text{REGRET}(S(m)) \) is low for many \(m \). This is done in the experimental section.

Example 3. [Relative GROW with Simple \(\mathcal{H}_0 \); connection to MDL] Another way to motivate (1.8) can be seen by restricting to the case with simple \(\mathcal{H}_0 = \{P_0\} \) and data i.i.d. according to all \(P \in \mathcal{H}_0 \cup \mathcal{H}_1 \). Then Proposition 1 gives that \(S_{\text{gro}}^{(m)}(\theta_1') = \prod_{j=1}^{n} S_{\text{gro}}(\theta_1)(j) \), which (Example 2) is equal to \(p_{\theta_1'}(Y(m))/p_0(Y(m)) \). Also, (see Section 4 of GHK), \(S(m) \) is an \(\mathcal{E} \)-variable for \(Y(m) \) if and only if it can be written as \(S(m) = q'(Y(m))/p_0(Y(m)) \) for some distribution \(Q' \) with density \(q' \) on \(Y(m) \) (here data are in general not i.i.d. according to \(Q' \). Then

\[
\log S_{\text{gro}}^{(m)}(\theta_1') - \log S(m) = \log \frac{p_{\theta_1'}(Y(m))}{p_0(Y(m))} - \log \frac{q'(Y(m))}{p_0(Y(m))} = \log \frac{p_{\theta_1'}(Y(m))}{q'(Y(m))} \tag{1.9}
\]

so minimizing (1.8) amounts to finding the distribution \(Q' \) achieving

\[
\min_{q'} \max_{\theta_1 \in \Theta_1} \mathbb{E}_{Y(m) \sim P_{\theta_1}} \left[\log \frac{p_{\theta_1}(Y(m))}{q'(Y(m))} \right] \tag{1.10}
\]

a quantity known as the minimax redundancy in information theory. Model selection based on (1.9) with the same distribution \(Q' \) is advocated by a particular version of the MDL (Minimum Description Length) Principle for learning from data [Barron et al., 1998; Grünwald, 2007]. It is known that, if \(\mathcal{H}_1 \) is a \(k \)-dimensional exponential family with \(\Theta_1 \) restricted to a compact, then for large \(m \), \(Q' \) converges (in a suitable sense) to the Bayes marginal distribution based on Jeffreys’ prior (note that the \(Y_{ij} \) are not i.i.d. under this distribution). In this sense, the proposal to optimize for relative GROWth is compatible with the MDL Principle. Also, the results of Clarke and Barron [1994] (Grünwald, 2007) explains in detail) show that in this case, (1.8) has size \((k/2) \log n + O(1) \). This suggests that, if \(\mathcal{H}_0 \) is composite and a sub-family of \(\mathcal{H}_1 \) with \(k' < k \) parameters, then (1.8) behaves as \(((k - k')/2) \log n + O(1) \). Whether this can be proven is an open question, but Figure 3 strongly suggests that for the \(2 \times 2 \) setting we study here, it is indeed the case.

2 Two-Stream Safe Tests

Consider the two-stream setting introduced in the beginning of the paper. To formalize it further, we introduce calendar time \(t = 1, 2, \ldots \) and corresponding random variables \(V_t \) and \(G_t \): at each \(t \), we obtain an outcome \(V_t \) in \(\mathcal{Y} \) in group \(G_t \in \{a, b\} \). Importantly though, at this point we make no assumptions about the relative ordering of outcomes from the two groups. At time \(t \), we have that \(t_a \), the number of \(a \)'s that are observed so far, and \(t_b \), the number of \(b \)'s observed so far, satisfy \(t_a + t_b = t \), but subject to this constraint we allow them coming in any order, e.g. first all \(a \)'s, or first all \(b \)'s, or interleaved. For example, with \(t_a = 3 \) and \(t_b = 2 \), we might have \(V_1 = Y_{1,a}, V_2 = \ldots \).
We define:

\[
P_{\theta_a, \theta_b}(y_a^t, y_b^t) := P_{\theta_a}(y_a^t)P_{\theta_b}(y_b^t) = \prod_{t=1}^{t_a} p_{\theta_a}(y_{t,a}) \prod_{t=1}^{t_b} p_{\theta_b}(y_{t,b}).
\]

To indicate that random vector \((Y_a^t, Y_b^t) \) := \((Y_{1,a}, \ldots, Y_{t_a,a}, Y_{1,b}, \ldots, Y_{t_b,b}) \) has a distribution represented by (3.1) we write \(Y_a^t \sim P_{\theta_a} \).

Moreover, if \(\theta^*_a = \theta_b \) for some \(\theta_b \in \Theta \) and then the density of data \(y_a^t, y_b^t \) is given by \(P_{\theta_b}(y_1, \ldots, y_n, a, Y_1, \ldots, y_{t-b}, b) \).

2.1 The simple \(E \)-variable for 2-stream–blocks

We first consider the case in which the alternative hypothesis is simple: \(\Theta = \{ \theta^* \} \). Consider a fixed sample size of size \(n \), and assume that we have observed a block of \(n_a \) outcomes in group \(a \) and \(n_b \) outcomes in group \(b \). In this case, we can define an \(E \)-variable as the likelihood ratio between \(p_{\theta^*_a, \theta^*_b} \) and a carefully chosen distribution that is a product of mixtures of distributions from \(\Theta_0 \): for \(n_a, n_b \in \mathbb{N}, n := n_a + n_b \) and \(y_a^n = (y_{1,a}, \ldots, y_{n,a}) \in \{0,1\}^{n_a} \) and \(y_b^n = (y_{1,b}, \ldots, y_{n,b}) \in \{0,1\}^{n_b} \), we define:

\[
s(y_a^n, y_b^n; n_a, n_b, \theta^*_a, \theta^*_b) := \frac{p_{\theta^*_a}(y_a^n) \prod_{i=1}^{n_a} \left(\frac{n_a}{n} p_{\theta^*_a}(y_{i,a}) + \frac{n}{n} p_{\theta^*_b}(y_{i,a}) \right)}{\prod_{i=1}^{n_b} \left(\frac{n_b}{n} p_{\theta^*_a}(y_{i,b}) + \frac{n}{n} p_{\theta^*_b}(y_{i,b}) \right)}. \tag{2.2}
\]

Theorem 1. The random variable \(S_{[n_a, n_b; \theta^*_a, \theta^*_b]} := s(Y_a^n, Y_b^n; n_a, n_b, \theta^*_a, \theta^*_b) \) is an \(E \)-variable, i.e. with \(s(\cdot) = s(\cdot; n_a, n_b, \theta^*_a, \theta^*_b) \), we have:

\[
\sup_{\theta \in \Theta} \mathbf{E}_{V \sim P_\theta} [s(V; n_a, n_b, \theta^*_a, \theta^*_b)] \leq 1. \tag{2.3}
\]

Moreover, if \(\{P_\theta : \theta \in \Theta\} \) is a convex set of distributions , then \(S_{[n_a, n_b; \theta^*_a, \theta^*_b]} \) is the \((\theta^*_a, \theta^*_b) \)-GRO \(E \)-variable: for any nonnegative function \(s' \) on \(Y_{n_a+n_b} \) satisfying \(\sup_{\theta \in \Theta} \mathbf{E}_{V \sim P_\theta} [s'(V)] \leq 1 \), we have:

\[
\mathbf{E}_{Y_a^n, Y_b^n \sim P_{\theta^*_a, \theta^*_b}} \left[\log s(Y_a^n, Y_b^n; n_a, n_b, \theta^*_a, \theta^*_b) \right] \geq \mathbf{E}_{Y_a^n, Y_b^n \sim P_{\theta^*_a, \theta^*_b}} \left[\log s'(Y_a^n, Y_b^n) \right].
\]

Note that in the second part of the theorem, we do not require convexity of \(\mathcal{H}_0 \) (which would not hold in the \(2 \times 2 \) case, since the set of i.i.d. Bernoulli distributions
over \(n_a + n_b > 1 \) outcomes is not convex), but instead of \(\{P_\theta : \theta \in \Theta\} \) (which in the \(2 \times 2 \) case is just the Bernoulli model on one outcome, which is convex).

First consider the basic case in which data comes in in fixed batches \(Y_1, Y_2, \ldots \), with each batch \(Y_j = ((Y_{j-1}n_a+1,a, Y_{j-1}n_a+2,a, \ldots , Y_{j-1}n_a+d), Y_{j-1}n_b+2,b, \ldots , Y_{j-1}n_b+b) \), having exactly \(n_a \) outcomes in group \(a \) and \(n_b \) outcomes in group \(b \), and let \(n = n_a + n_b \). This case would obtain, for example, in a sequential clinical trial in which patients come one by one, each odd patient is given the treatment and each even patient is given the placebo. Then \(n = 2, n_a = n_b = 1 \). We may then measure the evidence against the null hypothesis by the product E-value

\[
S^{(m)}_{[n_a,n_b,\theta^*_a,\theta^*_b]} := \prod_{j=1}^m S_{[n_a,n_b,\theta^*_a,\theta^*_b]}(Y_{(j)}; n_a, n_b, \theta^*_a, \theta^*_b). \tag{2.4}
\]

By Ville’s inequality \(\text{(1.3)} \), the probability under any distribution in the null that there is an \(m \) with \(S^{(m)}_{[n_a,n_b,\theta^*_a,\theta^*_b]} \) larger than \(1/\alpha \), is bounded by \(\alpha \), hence, type-I error guarantees are preserved under optional stopping if we perform the test based on \(\{S^{(m)}_{[n_a,n_b,\theta^*_a,\theta^*_b]}\}_{m \in \mathbb{N}} \) as defined underneath \(\text{(1.3)} \), as long as we stop between and not ‘within’ batches (if we stop within a batch, the E-variable \(S^{(m)}_{[n_a,n_b,\theta^*_a,\theta^*_b]} \) is undefined).

If the data do not come in batches of equal size, we may proceed as follows. First, we need to fix some \(n_a \geq 1 \) and \(n_b \geq 1 \) of our own choice. The treatment below will give valid E-variables irrespective of our choice of \(n_a \) and \(n_b \), but it will be seen that some choices are much more reasonable (will lead to much more evidence against the null, if the null is false) than others.

Thus, fix \(n_a \) and \(n_b \), set \(n = n_a + n_b \). At each time \(t \), we will have observed, so far, some number \(t_a \) of outcomes in group \(a \), and \(t_b \) in group \(b \). Now let \(m_t \) be the largest \(m \) such that \(mn_a \leq t_a \) and \(mn_b \leq t_b \). Now, for \(m = 1, 2, \ldots \), define \(Y_{(m)} \) as above. At any given time \(t \), \(Y_{(1)}, Y_{(2)}, \ldots , Y_{(m_t)} \) will have been observed, and there may be a number \(n'_a \) remaining observations in group \(j \in \{a, b\} \) so that either \(n'_a < n_a \) or \(n'_b < n_b \) or both. Since the \(\{Y_{(j)}\}_{j \in \mathbb{N}} \) determine a test martingale in the sense of Definition \(\text{(1)} \) optional stopping while preserving type-I error guarantees is then possible at any point in time \(t \), as long as the E-variable is calculated as \(\text{(2.4)} \) above for \(m = m_t \), thus ignoring the final \(n'_a + n'_b \) outcomes.

How should \(n_a \) and \(n_b \) be chosen in practice? For example, consider a variation of the clinical trial setting above in which the treatment-control assignment is randomized: for each incoming patient, a fair coin is flipped to decide treatment (\(a \)) or placebo (\(b \)). Then at any given time the number of patients in group \(a \) and \(b \) will not be precisely equal, but if we choose \(n_a = n_b = 1 \) as above it is highly unlikely that the amount of data we have to ignore at any given time \(t \) is very large. Similarly, if \(G_t \), the group membership of the \(t \)-th observation is itself i.i.d. according to some distribution \(P^* \), we might have some idea of the probability \(p^*(a) \) assigned to group \(a \); if \(p^*(a) = 2/5 \) (say), we would choose \(n_a = 2, n_b = 3 \).

We can in fact add a significant amount of extra flexibility by allowing for variable group sizes, i.e., the chosen \(n_a \) and \(n_b \) may depend on the past. For this, we introduce
2.2 The simple E-variable with Bayesian alternative

A function \(f : \bigcup_{t \geq 0} \mathcal{Y}^t \times \{0,1\}^t \rightarrow \{\text{STOP-BLOCK, CONTINUE}\} \) that, at each point in time \(t \), decides whether the current block should end \((f(V^t, G^t) = \text{STOP-BLOCK})\) or not \((f(V^t, G^t) = \text{CONTINUE})\). As long as the value of this function does not depend on the actual outcomes \(V_i \) observed after the last block that was completed, all requirements for having a test martingale and thus for safe optional stopping are met. For example, suppose that on data \(V_1, G_1, V_2, G_2, \ldots, V_i, G_i \) observed so-far, \(f \) has output STOP-BLOCK at \(m \) occasions, the last time at \(t' = t - k \) for some \(k > 0 \). Then \(f(t) \) is allowed to depend on \(Y^{(m)} \) and \(G^t \), but for any fixed \(Y^{(m)} = y^{(m)}, G^t = g^t \), for all \(y^k, y^k \in \mathcal{Y}^k \), we must have \(f((y^{(m)}, y^k), g^t) = f((y^{(m)}, y^k), g^t) \). In this way, one can in principle learn \(p^*(a) \) from the data, changing group sizes \(n_a \) and \(n_b \) flexibly as data come in. For simplicity, we have not followed this approach here, but all our results readily extend to this case.

2.2 The simple E-variable with Bayesian alternative

Now fix some prior \(W_1 \) with density \(w_1 \) on the alternative \(\Theta_1 \subseteq \Theta^2 \). We can trivially extend the definition of simple E-variable relative to singleton \((\theta^*_a, \theta^*_b)\) to a simple E-variable relative to arbitrary prior \(W_1 \) on \((\theta^*_a, \theta^*_b)\) define \(p_{W_1,a}(y) := \int p_{\theta_a}(y) dW_1(\theta_a) \), the integration being over the marginal prior distribution over \(\theta_a \), and similarly, \(p_{W_1,b}(y) := \int p_{\theta_b}(y) dW_1(\theta_b) \). Then, as a corollary of Theorem [1],

\[
s(y^n_a, y^n_b; n_a, n_b, W_1) := \frac{\prod_{i=1}^{n_a} p_{W_1,a}(y_i,a)}{\prod_{i=1}^{n_a} \left(\frac{n_a}{n} p_{W_1,a}(y_i,a) + \frac{n}{n_b} p_{W_1,b}(y_i,b) \right)} \cdot \frac{\prod_{i=1}^{n_b} p_{W_1,b}(y_i,b)}{\prod_{i=1}^{n_b} \left(\frac{n_b}{n} p_{W_1,a}(y_i,a) + \frac{n}{n_b} p_{W_1,b}(y_i,b) \right)}. \tag{2.5}
\]

is itself also an E-variable, as follows directly from applying Theorem [1] with a ‘meta’-set of distributions, which is possible since we made no assumptions at all on the set \(\Theta \) in Theorem [1], we replace \(\Theta \) by \(\mathcal{W}(\Theta) \), the set of distributions on \(\Theta \); we replace the background set of distributions \(\{p_{\theta} : \theta \in \Theta\} \) by the set of distributions \(\{p_W : W \in \mathcal{W}(\Theta)\} \); we replace the simple \(\mathcal{H}_1 = \{P_{\theta^*_a, \theta^*_b}\} \) by a ‘simple’ \(\mathcal{H}^*_1 = \{P_{W_a, W_b}\} \) for some distributions \(W_a \) and \(W_b \) on \(\Theta \). Such \(W_1 \)-based simple E-variables can be used to learn the parameters \(\theta^*_a, \theta^*_b \) as more data in both streams come in, and this is how we will use them in a sequential context with optional stopping. Thus, assume again that data comes in batches \(Y_{(1)}, Y_{(2)}, \ldots \) with each \(Y_{(j)} \) consisting of \(n_a \) outcomes in group \(a \) and \(n_b \) outcomes in group \(b \) (generalization of subsequent formulas to flexible group sizes changing in time and depending on the past as described at the end of Section 2.1 is straightforward). We start with some prior \(W_1 \) for the first batch \(Y_{(1)} \) but we now use, for the \(j \)-th batch \(Y_{(j)} \), the Bayesian posterior \(W_1 \mid Y^{(j-1)} \) as prior to define the \(j \)-th E-variable with:

\[
S^{(m)}_{[n_a, n_b, W_1]} := \prod_{j=1}^m S_{(j),[n_a, n_b, W_1]} ; \quad S_{(j),[n_a, n_b, W_1]} := s(Y _{(j)}; n_a, n_b, W_1 \mid Y^{(j-1)}). \tag{2.6}
\]

Again, \(\{S_{(j),[n_a, n_b, W_1]}\}_{j \in \mathbb{N}} \) is a conditional E-variable process, so testing based on the corresponding test martingale is safe under optional stopping by [1.3]. We note that, if
2. The simple E-variable with Bayesian alternative

data are sampled from some alternative hypothesis (θ^*_a, θ^*_b), then as data accumulates, the posterior W_1 will, with high probability, concentrate narrowly around (θ^*_a, θ^*_b) and so $S_{(j),[n_a,n_b,W_1]}$ will behave more and more similarly to the ‘best’ (θ^*_a, θ^*_b) E-variable. Still, with the exception of a special case we indicate below, in general we cannot expect it to be the W_1-GRO E-variable. Still, our experiments in Section 3 indicate that, at least in the 2×2 table setting, it behaves quite well in terms of the worst-case optimality criterion (1.8).

Simplification when $\{P_\theta : \theta \in \Theta\}$ is Convex Denoting $W_{1,g}|Y^{(m)}$ as the marginal posterior for θ_g, for $g \in \{a, b\}$, we can rewrite (2.6) as

$$S_{[n_a,n_b,W_1]}(m) = \frac{\prod_{j=1}^{n_a} PW_{1,a}|Y^{(j-1)}(Y_{j-1}n_a+i,a) \prod_{j=1}^{n_b} PW_{1,b}|Y^{(j-1)}(Y_{j-1}n_b+i,b)}{\prod_{j=1}^{n_a} PW_{1,a}|Y^{(j-1)}(Y_{j-1}n_a+i,a) \prod_{j=1}^{n_b} PW_{1,b}|Y^{(j-1)}(Y_{j-1}n_b+i,b)}$$

if $\{P_\theta : \theta \in \Theta\}$ convex

$$= \prod_{j=1}^{n_a} \prod_{j=1}^{n_b} \frac{PW_{1,a}|Y^{(j-1)}(Y_{j-1}n_a+i,a)}{PW_{1,b}|Y^{(j-1)}(Y_{j-1}n_b+i,b)} = \frac{\bar{p}_{\theta_0}|Y^{(j-1)} = \frac{n_a}{n} PW_{1,a}|Y^{(j-1)} + \frac{n_b}{n} PW_{1,b}|Y^{(j-1)}}{\bar{p}_{\theta_0}|Y^{(j-1)} = \frac{n_a}{n} PW_{1,a}|Y^{(j-1)} + \frac{n_b}{n} PW_{1,b}|Y^{(j-1)}}$$

with $\bar{\theta}_0|Y^{(j-1)} \in \Theta$ s.t. $p_{\bar{\theta}_0}|Y^{(j-1)} = \frac{n_a}{n} PW_{1,a}|Y^{(j-1)} + \frac{n_b}{n} PW_{1,b}|Y^{(j-1)}$, the existence of $\bar{\theta}_0|Y^{(j-1)}$ being immediate if $\{P_\theta : \theta \in \Theta\}$ is convex. This rewrite will enable several additional results for such Θ.

Connection to Bayes Factors Consider W_1 such that θ_a and θ_b are independent under W_1 with marginal distributions W_a and W_b, and now further take $n_a = n_b = 1$. By basic telescoping, we can then further rewrite (2.6) as

$$\int p_{\theta_a}(Y^{(m)}_a)dW_a(\theta_a) \int p_{\theta_b}(Y^{(m)}_b)dW_b(\theta_b) \prod_{j=1}^{m} \prod_{g \in \{a,b\}} \left(\frac{1}{2}PW_{1,a}|Y^{(j-1)}(Y_{j,g}) \right)$$

$$= \frac{\int p_{\theta_a}(Y^{(m)}_a)dW_a(\theta_a) \int p_{\theta_b}(Y^{(m)}_b)dW_b(\theta_b)}{\prod_{j=1}^{m} \prod_{g \in \{a,b\}} p_{\theta_0}|Y^{(j-1)}(Y_{j,g})} = \frac{\prod_{j=1}^{m} PW_{1,a}|Y^{(j-1)}(Y_{j,a}) \cdot PW_{1,b}|Y^{(j-1)}(Y_{j,b})}{\prod_{j=1}^{m} \prod_{g \in \{a,b\}} p_{\theta_0}|Y^{(j-1)}(Y_{j,g})}.$$ (2.8)

The numerator of the simple product E-value is now equal to the Bayesian marginal likelihood of the data based on prior W_1. In general, this rewrite of the numerator breaks down if n_a or n_b is larger than one and/or θ_a and θ_b are dependent under the prior. The reason is that according to (2.6) (see the line above (2.7)), the outcomes in each group within each of the m blocks are treated as independent (they have the same density). In contrast, while a Bayes factor for m blocks of n data points can also be rewritten as a product of $n \cdot m$ Bayes predictive densities, in general it makes every outcome dependent on every previous outcome — the posterior, and hence the posterior predictive, is updated also within each block. If θ_a and θ_b are independent under the prior though, then they are also independent under the posterior, and if $n_a = n_b = 1$ then the Bayes predictive densities for the two outcomes within each block will also be independent, and we get (2.8).
Thus, in this special case, if the denominator could also be written as a Bayes marginal likelihood, then our E-variable would really be a Bayes factor. Perhaps unfortunately, even if $\{P_{\theta} : \theta \in \Theta\}$ is convex, it cannot be written in this way, though it is very ‘close’: each of the m factors in the denominator in (2.8) is the product density function of two identical distributions for one outcome, and Proposition 2 shows that, in the special case of the 2×2 model with W_a and W_b independent beta priors, this distribution may itself be the Bayes predictive distribution obtained by equipping Θ_0 with another beta prior. Still, for a real Bayes factor corresponding to H_0, for each j, the two outcomes Y_{ja}, Y_{jb} in the j-th block would again not be independent given $Y^{(j-1)}$, whereas in (2.8) they are.

3 Safe tests for two proportions

We assume the setting above, but now we further assume that both streams are Bernoulli. We will see that this substantially simplifies the formulae. Thus, $\Theta = [0, 1]$ and (2.1) now specializes to

$$p_{\theta_a, \theta_b}(y_{a1}^t, y_{b1}^t) := p_{\theta_a}(y_{1,a}, \ldots, y_{t,a}, a)p_{\theta_b}(y_{1,b}, \ldots, y_{t,b}, b) = \theta_{a1}^t(1 - \theta_a)^{t-a} \theta_{b1}^t(1 - \theta_b)^{t-b}.$$

(3.1)

with t_{a1} the number of outcomes 1 in stream a among the first t_a ones, and t_{b1} the number of outcomes 1 in stream b among the first t_b ones. According to the null hypothesis, we have that $\theta_a^* = \theta_b^* = \theta_0$ for some $\theta_0 \in \Theta = [0, 1]$. (3.1) now simplifies to:

$$p_{\theta_0}(y_{a1}^t, y_{b1}^t) := \theta_0^t(1 - \theta_0)^{t-0},$$

(3.2)

with t_1 the number of ones in the sequence $y^t = y_1, \ldots, y_t$, and similarly for t_0.

We now run through the results of the previous section for this instantiation of our test. Again, we start with the case of a simple $H_1 = \{P_{\theta_a^*, \theta_b^*}\}$. (2.2) considerably simplifies and can be written as:

$$s(y_{a}^{n_a}, y_{b}^{n_b}; n_a, n_b, \theta_a^*, \theta_b^*) := \frac{p_{\theta_a^*}(y_{a}^{n_a})}{p_{\theta_0}(y_{a}^{n_a})} \cdot \frac{p_{\theta_b^*}(y_{b}^{n_b})}{p_{\theta_0}(y_{b}^{n_b})}, \text{ where } \theta_0 = \frac{n_a}{n} \theta_a^* + \frac{n_b}{n} \theta_b^*.$$

(3.3)

Theorem 1 tells us that this is an E-variable. Since $\{P_{\theta} : \theta \in \Theta\}$, the Bernoulli model, is convex, the theorem also tells us that in this case the simple E-variable with simple alternative is always (θ_a^*, θ_b^*)-GRO.

We now turn to the simple E-variable relative to arbitrary prior W_1. For the Bernoulli model the Bayes posterior predictive distribution is itself a Bernoulli distribution, with its parameter equal to the posterior mean. Therefore, we again get a considerable simplification: the simple E-variable relative to prior W_1 is still given by (2.5), but this now simplifies to:

$$s(y_{a}^{n_a}, y_{b}^{n_b}; n_a, n_b, \theta_a^*, \theta_b^*, W_1) := s(y_{a}^{n_a}, y_{b}^{n_b}; n_a, n_b, \theta_a^*, \theta_b^*) \text{ for } \theta_g^* = E_{\theta_g \sim W_1}[\theta_g], g \in \{a, b\}.$$

(3.4)
Combining this with (2.7) we infer that
\[
S^{(m)}_{[n_a,n_b,W_1]} = \prod_{j=1}^{m} \prod_{i=1}^{n_a} p_{\theta_a} | Y(j-1) | (Y(j-1)n_a+i,a) \prod_{j=1}^{m} p_{\theta_b} | Y(j-1) | (Y(j-1)n_b+i,b) \prod_{i=1}^{n_b} p_{\theta_b} | Y(j-1) | (Y(j-1)n_b+i,b)
\]
(3.5)
where \(\tilde{\theta}_a | Y(j-1) = E_{\theta_a \sim W} | Y(j-1) | [\theta_a] \) and \(\tilde{\theta}_b | Y(j-1) = E_{\theta_b \sim W} | Y(j-1) | [\theta_b] \) and \(\tilde{\theta}_0 | Y(j-1) = (n_a/n) \tilde{\theta}_a | Y(j-1) + (n_b/n) \tilde{\theta}_b | Y(j-1) \).

Simplified Calculations with Independent Beta Priors Now take the special case in which \(\theta_a \) and \(\theta_b \) are independent under the prior \(W_1 \) with marginals \(W_a \) and \(W_b \). In this case, \(\theta_a \) and \(\theta_b \) are also independent under the posterior, and we can simplify \(\tilde{\theta}_a | Y(j-1) = E_{\theta_a \sim W_a} | Y(j-1) | [\theta_a] \), the expectation of \(\theta_a \) under the posterior \(W_a \) given all data so far in group \(a \), and similarly for group \(b \). Using beta priors, this expectation is easy to calculate and we get:

Proposition 2. Let \(\theta_a, \theta_b \) be independent under \(W_1 \), with marginals \(W_a \) and \(W_b \) respectively. Suppose that these are beta priors with parameters \((\alpha_a, \beta_a)\) and \((\alpha_b, \beta_b)\) respectively. Then, upon defining \(U_a = \sum_{i=1}^{(j-1)n_a} Y_{i,a}, U_b = \sum_{i=1}^{(j-1)n_b} Y_{i,b}, U = \sum_{i=1}^{(j-1)n} (Y_{i,a} + Y_{i,b}) \) we have that \(\tilde{\theta}_a, \tilde{\theta}_b, \tilde{\theta}_0 \) as above satisfy: \(\tilde{\theta}_a | Y(j-1) = (U_a + \alpha_a) / ((j-1)n_a + \alpha_a + \beta_a) \), \(\tilde{\theta}_b | Y(j-1) = (U_b + \alpha_b) / ((j-1)n_b + \alpha_b + \beta_b) \) respectively, and \(\tilde{\theta}_0 | Y(j-1) \) is as further above. In the special case that we fix the prior parameters in the groups proportional to the group size fraction \(\gamma := n_b / n_a \), i.e. we fix \(\alpha_b = \gamma \alpha_a, \beta_b = \gamma \beta_a \), the expression for \(\tilde{\theta}_0 \) simplifies to \(\tilde{\theta}_0 | Y(j-1) = (U + (1 + \gamma) \alpha_a) / ((j-1)n + (1 + \gamma) \alpha_a + (1 + \gamma) \beta_a) \).

4 Composite \(\mathcal{H}_1 \) with and without restrictions on parameters in the \(2 \times 2 \) setting

In this section we describe the main instantiations of the \(2 \times 2 \) stream testing scenario that are relevant in practice. These differ in the choice of \(\mathcal{H}_1 \): the choice can be fully unrestricted (we simply want to find whether there is any discrepancy from \(\mathcal{H}_0 \) at all); restricted in terms of effect size; or restricted because we have prior knowledge about either \(\theta_a^* \) or \(\theta_b^* \). We consider each in turn, the second and third scenario in a separate subsection. In Section 5 we will show extensive numerical simulations for all three scenarios.

In the first scenario, a researcher wants to perform a *two-sided test*; they simply aim to find any discrepancy from \(\mathcal{H}_0 \) if it exists, with no restrictions are placed on \(\mathcal{H}_1 \). In this case, if we choose \(W_1 \) as independent beta priors on \(\theta_a \) and \(\theta_b \), we can simply proceed as described in Proposition 2 above. In Section 5 optimal values for the beta prior parameters \(\alpha_g \) and \(\beta_g \) are explored.

4.1 Dealing with Effect Sizes

In the second scenario that we will put to the test, we really want to test \(\mathcal{H}_0 \) against a restricted \(\mathcal{H}_1 \) consisting of those hypotheses that have a certain minimal effect size \(\delta \).
4.1 Dealing with Effect Sizes

This would then be a one-sided test. For example, a researcher might know that a new treatment must cure at least a certain number of patients more compared to a control treatment to provide a \textit{clinically relevant treatment effect} δ. In this case, \mathcal{H}_1 could be restricted to the set $\Theta^+(\delta)$, where

$$
\Theta(\delta) = \{ \theta \in [0, 1]^2 : d(\theta) = \delta \} ; \quad \Theta^+(\delta) = \begin{cases}
\{ \theta \in [0, 1]^2 : d(\theta) \geq \delta \} & \text{if } \delta > 0 \\
\{ \theta \in [0, 1]^2 : d(\theta) \leq \delta \} & \text{if } \delta < 0
\end{cases}
$$

where we set $d((\theta_a, \theta_b)) = \theta_b - \theta_a$. A second notion of effect size that often will be applicable in this sort of research is the \textit{log odds ratio} between θ_b and θ_a, with restricted parameter space again given by (4.1) but d set to $d((\theta_b, \theta_a)) = \log \left[\frac{\theta_b}{1 - \theta_b} \frac{1 - \theta_a}{\theta_a} \right]$. These are the two effect size notions that will feature in our experiments. An illustration of both divergence measures and the resulting restricted parameter spaces is given in Figure 1.

A third popular notion of effect size, the relative risk, behaves, for small θ_a and $\delta > 0$, very similarly to the odds ratio, and will therefore not be separately considered in our experiments. We will also not consider two-sided testing against a restricted \mathcal{H}_1 (i.e., one wants to restrict the alternative hypothesis to a treatment being either substantially better or substantially worse than a control) since this is not a very common scenario. Such E-variables for the 2×2 setting and stream data could however be constructed with a method analogous to the one we describe below, by combining two “simple” E-variables [Turner, 2019].

![Figure 1](image)

- (a) $d((\theta_a, \theta_b)) = \theta_b - \theta_a$
- (b) $d((\theta_b, \theta_a)) = \log \left[\frac{\theta_b}{1 - \theta_b} \frac{1 - \theta_a}{\theta_a} \right]$

Figure 1: Examples of restricted alternative hypothesis parameter spaces for several values of two divergence measures; the difference between group means and the log odds ratio. Θ_0 denotes the null hypothesis parameter space; $\Theta^+_1(\delta)$ the restricted alternative hypothesis parameter space.
A (sub)optimal E-variable for restricted H_1 What would be the ideal E-variable for H_1 thus restricted? We first consider the case of a $H_1 = \{ P_\theta : \theta \in \Theta(\delta') \}$ with a precise effect size $\delta' \neq 0$. For this case, following the motivation of Section 4.1, we simply adopt the criterion (1.8), re-stated for convenience below:

$$\text{REGRET}(S^{(m)}) := \max_{\theta \in \Theta(\delta')} E_{Y^{(m)} \sim P_\theta} [\log S_{\text{gro}}^{(m)}(\theta) - \log S^{(m)}],$$

(4.2)

The ideal E-variable at sample block size m would be the E-variable achieving, among all E-variables for H_0, the minimum regret (4.2). We will refrain from the goal of optimizing (4.2) precisely. Instead we will consider E-variable processes as defined in (3.5) with priors W_1 on $\Theta(\delta')$: $S^{(m)}_{\theta_1,\theta_1,W_1}$. Among these, we will search for the prior that approximately minimizes (4.2). Since the optimizing prior depends on m, we will design as our default choice a prior W_1^* that is suboptimal (but not too bad) for small m, and optimal, among the class considered, for large values of m in Section 5.2.

Next we extend this to the more realistic case of a H_1 with $\delta \in \Theta^+(\delta')$, i.e. we assume, under H_1, that δ is at least as extreme as δ'. A first intuitive (and certainly defensible) approach would be to aim for minimization of (4.2) with the maximum now over $\Theta^+(\delta')$ rather than $\Theta(\delta')$, and to find the prior W_1^* on $\Theta^+(\delta')$ that approximately, among all priors, minimizes (4.2). However, it turns out that, for the E-variable process $S^{(1)}_{\theta_1,\theta_1,W_1^*}, S^{(2)}_{\theta_1,\theta_1,W_1^*}, \ldots$ that we advocate for the problem (4.2), it holds for every m that

$$\text{for all } (\theta_a, \theta_b) \text{ with } d((\theta_a, \theta_b)) > \delta', \quad E_{Y^{(m)} \sim P_{(\theta_a, \theta_b)}} [\log S^{(m)}_{\theta_1,\theta_1,W_1^*}] \geq \min_{\theta \in \Theta(\delta')} E_{Y^{(m)} \sim P_\theta} [\log S^{(m)}_{\theta_1,\theta_1,W_1^*}].$$

(4.3)

Thus, our second approach is to use the E-variable process based on prior W_1^* also if δ can be more extreme than δ', since if δ is actually more extreme, the expected evidence against H_0 using W_1^* (even though designed for δ') will actually get larger anyway.

The advantage of the first approach is that it will lead to much higher GROWth ($E_{P_{(\theta_a, \theta_b)}} [\log S^{(m)}_{\theta_1,\theta_1,W_1^*}]$ much larger than $E_{P_{(\theta_a, \theta_b)}} [\log S^{(m)}_{\theta_1,\theta_1,W_1^*}]$) if we are ‘lucky’ and $|d(\theta_a, \theta_b)| \gg |\delta'|$. The price to pay is that it will lead to somewhat smaller growth if $d((\theta_a, \theta_b))$ is close to δ' (experiments omitted). It is easy to see why this is the case: the prior W_1^* must spread out its mass over a much larger subset of $[0, 1]^2$ than W_1^*.

Therefore, the E-variables based on W_1^* will perform somewhat worse than those based on W_1^* if the data are sampled from a point (θ_a^*, θ_b^*) in the support of W_1^*, simply because W_1^* gives much larger prior support in a neighborhood of (θ_a^*, θ_b^*). For this reason, and also because it is computationally a lot simpler, we decided to experiment with the second approach rather than the first.

Calculating the prior and posterior for restricted H_1 For both notions of effect size, θ_a and θ_b can no longer be independent for any prior on $\Theta(\delta)$. Hence, the prior and posterior do not longer admit the composition in terms of beta densities as in
4.2 Restricting H_1 based on event rate and on minimal clinically relevant difference

Proposition 2. For example, when putting a prior on $\Theta(\delta)$ with the additive effect size notion, we know the new domain of θ_a would be $[0, 1 - \delta]$. θ_b is completely determined by θ_a and δ in this case. We can, in principle, still analytically calculate the marginal probability of the observed data by reparameterizing $\theta_a = (1 - \delta)\rho$ and putting a beta prior on ρ, leading to an Appel function (details omitted), but the length of the formula for this marginal increases unmanageably in the sample size. For this reason, we opt for a numerical approach, which is explained in Appendix B.

4.2 Restricting H_1 based on event rate and on minimal clinically relevant difference

In practice, researchers often already have estimates of the occurrence rate of events in the control group in their experiments; for example, estimates of the proportion of patients that recover from a disease under standard care are known, and researchers investigate whether the proportion of recovered patients is higher in a group receiving an experimental treatment. This restriction on θ_a can be incorporated in the E-variable. This incorporation becomes especially easy if H_1 is already restricted to a set $\Theta^+(\delta')$ with minimal relevant effect size δ'. For then $\Theta(\delta')$ contains just one point (θ_a^*, θ_b^*) (in the case of the linear effect size, this is $(\theta_a, \theta_a + \delta)$), and the E-variable constructed according to the guidelines of the previous subsection, which minimizes (4.2) even though we allow $\delta \geq \delta'$, would be the simple E-variable corresponding to putting prior mass 1 on (θ_a^*, θ_b^*).

5 Illustration via Simulated Data

In this section, we illustrate properties of our E-variables for 2×2 application through simulated data. First, we show that in the optional continuation setting, as predicted by theory, type-I error control is achieved irrespective of the restriction on H_1 used. Thereafter, we propose optimal choices for the beta prior parameters to use in (3.5), supported by simulation experiments concerning regret and power. Finally, we compare the power of our E-variable with these optimal prior choices and different restrictions on H_1 to Fisher’s exact test.

5.1 Type-I Error

In Figure 2 type-I error rates of several E-variables and Fisher’s exact test estimated through a simulation experiment are depicted. 2000 samples of length 1000 were drawn according to a Bernoulli(0.1) distribution to represent 1000 data streams in two groups. After each complete block $m \in \{1, \ldots, 1000\}$ an E-value or p-value was calculated and the proportion of rejected experiments up until m with each test type was recorded. As the stream lengths increase, the type-I error rate under (incorrectly applied) optional stopping with Fisher’s exact test increases quickly. The type-I error rate of the E-variables remains bounded.
5.2 GROwth and Power

The E-variables introduced above still left the user with one choice to make: the values of the beta prior parameters. In this section we aim to find the beta prior W_1 that, among E-variables of the form (3.5) minimize regret (see (1.10)), such that researchers could use this particular beta prior as a “default” and (almost) optimal option. We here assume no restriction and also no clear prior knowledge on H_1, but we will take $n_a = n_b = 1$; it thus makes sense to restrict our choice of beta prior parameter values (notation as in Proposition 2) to a set of symmetrical priors on θ_a and θ_b, hence, we chose to look at the set of priors satisfying $\alpha_a = \beta_a = \alpha_b = \beta_b = \gamma$ for some $\gamma > 0$. For given γ, the prior is denoted as $W_{[\gamma]}$ from now on.

When computing $\text{REGRET}(S_{[n_a,n_b,W_{[\gamma]}]}^{(m)})$ exactly, the number of terms to sum over for computing the expected logarithmic loss grows exponentially in m as the E-variables used are not exchangeable, specifically as 2^{2m^2} for $n_a = n_b = 1$. This yields it infeasible to compute $\text{REGRET}(S_{[n_a,n_b,W_{[\gamma]}]}^{(m)})$ for larger values of m. However, since the optimal prior parameter value γ for minimizing regret depend on m, one might want to estimate and optimize regret for higher m. To this end, we simulated estimates \hat{l} of the expected log loss through sampling K times from the distribution of interest P_{θ_a,θ_b}:

$$\hat{l}_{\theta_a,\theta_b}(m) = \frac{1}{K} \sum_{k=1}^{K} \left[\log S_{\text{GRO}(\theta_a,\theta_b)}^{(m)}(Y^{(m),k}) - \log S_{[n_a,n_b,W_{[\gamma]}}^{(m)}(Y^{(m),k}) \right], \quad (5.1)$$

with $Y^{(m),k}$ the stream with m blocks drawn from P_{θ_a,θ_b} for simulation k. Simulations
(omitted from the text) show that the bias and variance of this estimate can be made negligibly small for K that still allow computation on a standard laptop. This simulation approach was used to estimate for each m the γ achieving the minimum regret, as illustrated in Figure 5. Interestingly, the values achieving minimal regret are very small, yielding almost improper priors, for small m, and appear to converge approximately to 0.18 for increasing values of m.

![Figure 3: Minimum regret and prior parameter values achieving this minimum for a range of stream lengths m for the uninformed E-variable for tests of two proportions. In the plot on the left, the line $\frac{1}{2} \log(m) + 0.73$ has been added for comparison to the theoretical regret growth according to the MDL principle (see Example 6). For higher values of m the values achieving the minimum appeared to converge to approximately 0.18.]

Power In Figure 3 we saw that regret is minimized for a (slightly) different choice of beta prior for each stream length, with apparent asymptotic convergence to $\gamma \approx 0.18$. Whereas small (log-) regret is the natural performance measure in experiments that may always be continued at some point in the future, traditionally oriented researchers may be more interested in power. The question is then whether the optimal asymptotic choice for γ that minimizes regret is also the optimal choice in terms of power. The following experiment shows that by and large it is. For simplicity we only illustrate the case $n_a = n_b = 1$ and a desired power of 0.8. For various effect sizes δ, and various values of γ, we first determined the smallest fixed sample size (number of blocks) m such that, if sampling stops after m blocks (and then we reject the null iff $S^{(m)}_{(n_a, n_b, W_0)} > \alpha^{-1}$), the power is ≥ 0.8 in the worst case over all (θ_a, θ_b) with $\delta = \theta_b - \theta_a$. We call this the worst-case sample size needed for 80% power at effect size δ with prior parameter γ. The reason for calling it worst-case is that in practice, by engaging in optional stopping, we can get a higher power without compromising the Type-I error guarantee: if, for
m' < m, we already have $S_{\gamma}^{(m')} > \alpha^{-1}$ then we stop and reject early; if not, we go on until we have seen m blocks and then stop and reject iff $S_{\gamma}^{(m)} > \alpha^{-1}$. We may thus consider the expected sample size of this procedure. We thus performed two simulation experiments: first, to estimate the worst-case sample size (at $\alpha = 0.05$), and second, to estimate the expected sample size. Again, the estimates were obtained by re-simulating a sequence of data blocks K times for a large number of K, making sure the bias and variance of the estimates were sufficiently small.

In Figure 4 results of these experiments are depicted. We make two observations: first, almost no difference in sample sizes to plan for between $\gamma = 0.18$ and $\gamma = 0.05$ was observed for distributions with small expected sample sizes (the light blue and dark blue lines in the figure are almost indistinguishable), and other values of γ obtained smaller power, indicating that the apparently asymptotically regret-optimal prior parameter value found in Figure 3 could in practice be used as a default setting for our E-variable — and as a consequence, we recommend it as such. Second, in the rightmost panel we see that for distributions with very small relative differences between θ_a and θ_b, e.g. $P_{0.5,0.58}$, values of γ higher than 0.18 yielded a higher power, whereas for such δ, regret was optimized for $\gamma = 0.18$ for the corresponding (very large) stopping times in our simulation experiments. This is not surprising given what is known for simple $H_0 = \{P_{\theta_0}\}$: when testing a point null θ_0 with a 1-dimensional exponential family alternative, neither the minimax regret priors nor standard objective Bayes priors obtain optimal power in an asymptotic sense: they reject if $|\hat{\theta} - \theta_0|^2 \gtrsim (\log n)/n$ (with $\hat{\theta}$ denoting the MLE) whereas based on nonstandard ‘switching’ [van der Pas and Grünwald, 2018] or ‘stitching’ methods [Howard et al., 2021] one can get rejection if $|\hat{\theta} - \theta_0|^2 \gtrsim (\log \log n)/n$. However, there is a significant price to pay in terms of the constants hidden in the asymptotics, and in practice, ‘standard’ priors may very well perform better at all but very large sample sizes [Mailard, 2019]. Given that the higher γ, the more the beta prior behaves like a switch prior, we conjecture that what we see in Figure 4(b) at very small δ is a version of the switching/stitching phenomenon with a composite null; since it only kicks in at very large sample sizes, we prefer $\gamma = 0.18$ as the default choice after all.
5.2 GROwth and Power

Figure 4: In 2000 simulations, the (natural logarithm of) the number of data blocks \(m \) ("sample sizes") needed for achieving 80% power while testing at \(\alpha = 0.05 \) for distributions with varying group means and varying differences between group means were estimated for different beta prior parameter values.

Finally, we compared the performance of our \(E \)-variables with the "default" beta priors with \(\gamma = 0.18 \) with their classical counterpart, Fisher's exact test. Worst-case and expected stopping times of the \(E \)-variables with- and without restrictions on \(H_1 \) were compared for sample sizes one would need to plan for when analyzing experiment results with Fisher's exact test; see Figure 5. We noticed that the expected sample sizes achieved under optional stopping with the \(E \)-variable with unrestricted \(H_1 \) were very similar to the sample sizes needed to plan for with Fisher's exact test. When using a correctly specified restriction on \(H_1 \) (the leftmost data points in the second and third subfigures), this expected number of samples is even considerably lower than the sample size to plan for with Fisher's exact test. However, under misspecification, when the difference or log odds ratio used in the design of the \(E \)-variable turns out to be a lot smaller than the real difference present in the data generating machinery, one should expect to collect a lot more samples (the data points towards the right in the second and third subfigures).
Note that in Figure 5 we used the default beta prior parameters $\gamma = 0.18$ found optimal for the unrestricted case for the restricted cases as well; some first experiments revealed that changing the prior parameter values did not lead to significant changes in power for the restricted E-variables (results not shown). We do however offer the possibility in our software package [Ly et al., 2020] to run similar experiments for users to determine the optimal prior parameter γ for a given expected sample size and $\Theta^{(+)\delta'}$.

Figure 5: Estimates from 2000 simulations of worst-case and expected sample sizes for achieving 80% power estimated for three types of E-variables with different restrictions on H_1, and the sample size to plan for with Fisher’s exact test. Hypothesized effect sizes were 0.04 for the E-variables with prior information on the absolute difference and were converted equivalently for the log odds ratio prior information case, and we set $\gamma = 0.18$ for the beta priors.

6 Illustration via Real World Data

We will now demonstrate the approach through a real-world example: the SWEPIS study on labour induction [Wennerholm et al., 2019]. Wagenmakers and Ly have used this example before to illustrate how using single p-values to make decisions can hide valuable information in research data [Wagenmakers and Ly, 2020].

In the SWEPIS study, two groups of pregnant women were followed. In the first group labour was induced at 41 weeks, and in the second labour was induced after 42 weeks. The study was stopped early, as 6 cases of stillbirth were observed in the 42-weeks group (at $n_b = 1379$), as compared to 0 in the 41-weeks group (at $n_a = 1381$). These data yield a significant Fisher’s exact test, $P \approx 0.015$, for testing that the number of stillbirths in the 42-weeks group is higher, when (wrongly) assuming that n_a and n_b were fixed in advance to the above values.

If we had used E-variables for continuously analyzing this data, would we then have found evidence for superiority of the 41 weeks approach, and would we have stopped the study earlier? As the E-variables we propose are not exchangeable, i.e. their values...
change under permutations of the data sequences, a direct comparison to the results of the SWEPIS study is not possible as the exact data stream is not available. To simulate a “real-time” scenario equivalent to the SWEPIS study, we assume we collect a total of 1380 data blocks, with $n_a = n_b = 1$, with a total of 2760 observations. We already know that in group a, 0 events are observed. In group b, 6 events are observed, of which we know that the last event was observed in data block 1380, directly before the study was stopped. Hence, we can simulate the “real-time” data by permuting the indices of the observations in group b in the 1379 first data blocks.

Four different approaches for analyzing the data with E-variables were explored: without any restriction on H_1, with a restriction based on the additive divergence measure (the minimal difference between the groups), with a restriction based on the log odds ratio, and with a restriction on the event rate in the control group and on the minimal difference. The minimal difference, log odds ratio and event rate used were chosen based on a large recent meta-analysis on stillbirths [Muglu et al., 2019]; we used $\delta = 0.00318$ as a restriction on the difference between the groups, $\log(2)$ for the log odds ratio and 0.0001 as the event rate. For all E-variables, the default beta prior values found in Section 5.2 were used.

In Figure 6 the spread of the evidence collected with the four types of E-variables in 1000 simulations analogous to the SWEPIS setting is depicted. Because the observed effect size was higher than expected, E-values obtained with the (too low) restriction on the effect size were lower than the E-values obtained with the E-variable without restrictions. Adding the restriction on the event rate increased the E-values, and in all 1000 simulations, the SWEPIS study would have been stopped before the occurrence of the sixth stillbirth. Figure 6 also depicts results of a second simulation experiment, where we sampled 1000 data streams from $P_{0.6^{1380}}$, and recorded the stopping times while analyzing the streams with the four E-variables with different restrictions on H_1. With the E-variables without restriction, or with a restriction on the event rate and difference between the groups, we would have often stopped data collection earlier than in the SWEPIS setting.

We can thus conclude that, would the monitoring of the study have been performed with E-variables instead of p-values, first of all we would probably have collected correct evidence for a higher proportion of stillbirths in the 42-weeks group, and second, the degree of evidence is quite similar to that collected with the (incorrectly determined) p-value: both are significant at the 0.05 level. Wagemakers and Ly with their method also found evidence for the existence of a difference between the two groups, but not of the same degree: they reported Bayes factors that varied, depending on the choice of the prior, between 1 and 5.4. A possible explanation for this difference could be that the Bayes factors used for collecting evidence in their study are not designed for analyzing stream data, and prior choices (a prior distribution on the log odds ratio in this case) are made entirely upfront. As we also saw in our experiments, choosing the wrong prior or restriction on H_1 can make a large difference for the evidence collected. These results show that when planning a prospective study, using E-variables for analysis could, through their flexibility, contribute to earlier evidence collection compared to existing
methods.

(a) Simulated E-values in SWEPIS setting, stopping at $m = 1380$

(b) Simulated stopping times in setting with continuing until $E \geq 20$

Figure 6: Spread of E-values and stopping times observed with safe analysis of 1000 simulations of data streams analogous to the SWEPIS scenario, with four different types of restrictions on H_1. As the E-variable with full prior knowledge is exchangeable, no spread is observed for those E-values in the first figure, where for all simulations, $\sum_{j=1}^{1380} y_a^{(j)} = 0$ and $\sum_{j=1}^{1380} y_b^{(j)} = 6$.

26
7 Extensions

7.1 General Null Hypotheses

We now consider general null hypotheses, \(\Theta \), allowing for the case that the elements of \(\Theta \) have two different components. In Theorem 1 below, which generalizes Theorem [2], we develop a statistic for this case that we show to be an \(\mathbb{E} \)-variable. The hurried reader may skip to the less technical Section 7.2 where we instantiate the new general result to the considerably simpler 2 \(\times \) 2 case.

Again we first consider a simple alternative hypothesis: \(\Theta = \{(\theta^*_a, \theta^*_b)\} \) with \((\theta^*_a, \theta^*_b) \in \Theta \). The extension to composite \(\mathcal{H}_1 \) can be handled by imposing a prior \(W_1 \) on \(\Theta_1 \) as in Section 2.2 and will be illustrated for the 2 \(\times \) 2 model in Section 7.2 As in Section 2.1 our goal is to define an \(\mathbb{E} \)-variable for a block of \(n = n_a + n_b \) data points with \(n_g \) points in group \(g \), \(g \in \{a, b\} \). Our strategy will be to first develop an \(\mathbb{E} \)-variable for a modified setting in which there is only a single outcome, falling with probability \(n_a/n \) in group \(a \) and \(n_b/n \) in group \(b \). To this end, for \(\theta = (\theta_a, \theta_b) \), we define \(p^\theta(Y | a) := p_0(y) \), \(p^\theta(Y | b) := p_0(y) \), all distributions with a \(\theta \) refer to the modified setting with just one outcome. We let \(W^\theta(\Theta_0) \) be the set of all distributions on \(\Theta_0 \) with finite support. For \(W \in W^\theta(\Theta_0) \), we define \(p^W_Y(Y | g) = \int p^W_Y(Y | g) dW(\theta) \). We set \(p^W(y | g) := \prod_{i=1}^k p^W_i(y_i | g) \).

Further we define \(p^\theta(\cdot | g) \), \(g \in \{a, b\} \) to be the conditional probability density satisfying

\[
E_{\mathcal{G} \sim Q} E_{Y \sim p^\theta_G} [-\log p^\theta(Y | G)] = \inf_{W \in W^\theta(\Theta_0)} E_{\mathcal{G} \sim Q, \mathcal{Y} \sim p^\theta_G} [-\log p^W(Y | G)] \tag{7.1}
\]

with \(Q'(G) \) the distribution for \(G \in \{a, b\} \) with \(Q'(G = a) = n_a/n \). Clearly we can rephrase (7.1) equivalently as:

\[
D(Q'(G,Y) \| P^\theta(G,Y)) = \inf_{W \in W^\theta(\Theta_0)} D(Q'(G,Y) \| P^W_G(Y,G)), \tag{7.2}
\]

where \(D \) is the KL divergence. Here we extended the conditional distributions \(P^W(Y | G) \) and \(P^\theta(Y | G) \) (corresponding to densities \(p^W(Y | G) \) and \(p^\theta(Y | G) \)) to a joint distribution by setting \(P^W_Y(G,Y) := Q'(G)P^W_Y(Y | G) \) (and similarly for \(P^\theta \)) and we extended \(Q'(G,Y) := Q'(G)P^\theta_G(Y) \). We have now constructed a modified null hypothesis \(\mathcal{H}'_0 = \{P^\theta_G(Y,G) : \theta \in \Theta_0\} \) of joint distributions for a single ‘group’ outcome \(G \in \{a, b\} \) and ‘data’ outcome \(Y \in \mathcal{Y} \). We let \(\mathcal{H}'_0 = \{P^W_G(Y,G) : W \in W^\theta(\Theta_0)\} \) be the convex hull of \(\mathcal{H}'_0 \).

(7.2) shows that \(p^\theta \) is the reverse information projection [Li, 1999] [Li and Barron, 2000] of \(Q' \) onto \(\mathcal{H}'_0 \). Building on [Li, 1999], [Grünwald et al., 2019] Theorem 1] established a general relation between reverse information projection and \(\mathbb{E} \)-variables. Part 1 of that theorem establishes that (a) if the minimum in (7.1) (or (7.2)) is achieved, then \(p^\theta(\cdot | \cdot) = p^W(\cdot | \cdot) \) for an essentially unique distribution \(W^\theta \) on \(\Theta_0 \); and (b), perhaps more surprisingly, even if the minimum is not achieved, there exists a unique (potentially sub-) i.e. integrating to less than one) density \(p^\theta(\cdot | \cdot) \) relative to the given background measure such that (7.1) holds; and (c), for all \(\theta \in \Theta_0 \),

\[
E_{\mathcal{G} \sim Q} E_{Y \sim p^\theta_G} \left[\frac{p^\theta_G(Y | G)}{p^\theta(Y | G)} \right] = E_{\mathcal{G} \sim Q} E_{Y \sim p^\theta_G} \left[\frac{p^\theta_G(Y,G)}{p^\theta(Y,G)} \right] \leq 1. \tag{7.3}
\]
This expresses that \(p'_a(Y|G)/p^\circ(Y|G) \) is an E-variable for our modified problem, in which within a single block we observe a single outcome in group \(g \), with \(g \) chosen with probability \(n_g/n \). If were to interpret the E-variable of the modified problem as in (7.3) as a likelihood ratio for a single outcome, its corresponding likelihood ratio for a single block of data in our original problem with \(n_g \) outcomes in group \(g \) would look like:

\[
s(y^n_a, n_y^b; n_a, n_b, (\theta_a^*, \theta_b^*); \Theta_0) := \frac{p'_a(\theta_a^n, \theta_b^n) (y_a^n | a)p'_b(\theta_a^n, \theta_b^n) (y_b^n | b)}{p^\circ(y_a^n | a) p^\circ(y_b^n | b)} = \frac{p\theta_a^n (y_a^n) p\theta_b^n (y_b^n)}{p\theta_a^n (y_a^n | a) p\theta_b^n (y_b^n | b)}.
\]

The following theorem expresses that this ‘extension’ of the E-variable in the modified problem gives us an E-variable in our original problem:

Theorem 2. \(S_{\{n_a, n_b, \theta_a, \theta_b; \Theta_0\}} := s(Y^n_a, Y^n_b; n_a, n_b, (\theta_a^*, \theta_b^*); \Theta_0) \) as in (7.4) is an E-variable, i.e. with \(s(\cdot) = s(\cdot; n_a, n_b, (\theta_a^n, \theta_b^n); \Theta_0) \), we have:

\[
\sup_{(\theta_a, \theta_b) \in \Theta_0} E_{Y_{i}^n \sim P_{\theta_a}, Y_{i}^n \sim P_{\theta_b}} [s'(Y^n_a, Y^n_b)] \leq 1.
\]

Moreover, if \(\mathcal{H}'_0 = \{ P'_\theta : \theta \in \Theta_0 \} \) (the null hypothesis for the modified problem) is a convex set of distributions (i.e. \(\mathcal{H}'_0 = \mathcal{H}_0 \) that is compact in the weak topology, then \(p'(\cdot) = p'_\theta(\cdot) \) for some \(\theta \in \Theta_0 \) and \(S_{\{n_a, n_b, \theta_a, \theta_b; \Theta_0\}} \) is the \((\theta^*_a, \theta^*_b) \)-GRO E-variable for the original problem.

In the case that \(\mathcal{H}'_0 \) is not convex and closed, we do not have a simple expression for \(p^\circ \) in general, and we may have to find it numerically by minimizing (7.1). In the 2 \times 2 case though, there are interesting \(\mathcal{H}_0 \) for which the corresponding \(\mathcal{H}'_0 \) is convex, and we shall now see that this leads to major simplifications.

7.2 General Convex \(\Theta_0 \) for the 2 \times 2 case

In this subsection and the next, \(\{ P_{\theta_a, \theta_b} \} \) refers to the 2 \times 2 model again. We now let \(\Theta_0 \) be any closed convex subset of \([0, 1]^2\) that contains a point in the interior of \([0, 1]^2\). Again, note that the corresponding \(\mathcal{H}_0 = \{ P_0 : \theta \in \Theta_0 \} \) need not be convex; still, \(\mathcal{H}'_0 \), the null hypothesis for the modified problem as defined above, must be convex if \(\Theta_0 \) is convex, and this will allow us to design E-variables for such \(\Theta_0 \).

Let \(\mathcal{H}_1 = \{ P_{\theta_a^*, \theta_b^*} \} \) in the interior of \([0, 1]^2\), and let

\[
\text{KL}(\theta_a, \theta_b) := D(P_{\theta_a, \theta_b}(Y^n_a, Y^n_b) || P_{\theta_a^*, \theta_b^*}(Y^n_a, Y^n_b)) = \sum_{y^n_a \in \{0, 1\}^n, y^n_b \in \{0, 1\}^n} p_{\theta_a^n}(y^n_a) p_{\theta_b^n}(y^n_b) \log \frac{p_{\theta_a^n}(y^n_a) p_{\theta_b^n}(y^n_b)}{p_{\theta_a^*}(y^n_a) p_{\theta_b^*}(y^n_b)}
\]

stand for the KL divergence between \(P_{\theta_a^*, \theta_b^*} \) and \(P_{\theta_a, \theta_b} \) restricted to a single block (note that in the previous subsection, KL divergence was defined for a single outcome \(Y \)). The following result makes crucial use of Theorem 2.
Theorem 3. \(\min(\theta_a, \theta_b) \in \Theta_0 \) is uniquely achieved by \((\theta_a^*, \theta_b^*)\). If \((\theta_a^*, \theta_b^*) \in \Theta_0 \), then \((\theta_a, \theta_b, \theta_\circ) = (\theta_a^*, \theta_b^*)\). Otherwise, \((\theta_a^*, \theta_b^*)\) lies on the boundary of \(\Theta_0 \), but not on the boundary of \([0,1]^2 \). The \(E\)-variable \((7.4)\) is given by the distribution \(W\) that puts all its mass on \((\theta_a^*, \theta_b^*)\), i.e.

\[
s(y_a^n, y_b^n; n_a, n_b, (\theta_a^*, \theta_b^*) ; \Theta_0) = \frac{p_{\theta_a^*}(y_a^n) p_{\theta_b^*}(y_b^n)}{p_{\theta_a}(y_a^n) p_{\theta_b}(y_b^n)} (7.6)
\]

is an \(E\)-variable. Moreover, this is the \((\theta_a^*, \theta_b^*)\)-GRO \(E\)-variable relative to \(H_0\).

We can again extend this \(E\)-variable as in Section 3 to the case with a prior \(W_1\) on \(\Theta_1\). The reasoning leading up to \((3.4)\) still holds, and the \(E\)-variable corresponding to \(m\) blocks of data becomes, generalizing \((3.5)\),

\[
S_{[n_a, n_b, W_1; \Theta_0]}^{(m)} = \prod_{j=1}^{m} \prod_{i=1}^{n_j} p_{\bar{\theta}_a}(Y(j-1) | Y(j-1)^{n_j+1}) p_{\bar{\theta}_b}(Y(j-1) | Y(j-1)^{n_j+1}) (7.7)
\]

where, for \(g \in \{a, b\}\), \(\bar{\theta}_g(Y(j-1))\) is defined as in \((3.5)\) and \((\bar{\theta}_a | Y^{(j-1)}, \bar{\theta}_b | Y^{(j-1)})\) defined to achieve \(\min(\theta_a, \theta_b) \in \Theta_0 \) \(D(P_{\theta_a | Y^{(j-1)}, \bar{\theta}_b | Y^{(j-1)}}(Y_a^{n_a}, Y_b^{n_b})) || P_{\bar{\theta}_a}(Y_a^{n_a} , Y_b^{n_b}))\).

Let us illustrate these results for two choices of \(\Theta_0\).

\(\Theta_0\) with linear boundary First, we let \(\Theta_0(s, c)\), \(s \in \mathbb{R}, c \in \mathbb{R}\), stand for any straight line through \([0,1]^2\): \(\Theta_0(s, c) := \{(\theta_a, \theta_b) \in [0,1]^2 : \theta_b = s + c \theta_a\}\). This can be extended to \(\Theta_0(\leq s, c) := \bigcup_{s' < s} \Theta_0(s', c)\) and similarly to \(\Theta_0(\geq s, c) := \bigcup_{s' > s} \Theta_0(s', c)\). For example, whereas in Figure 1(a), \(\Theta_0\) was taken to be the diagonal, we could now also take \(\Theta_0 = \Theta_0(s, c)\) to be the light blue line (which would correspond to \(s = 0.1, c = 1\)), or the whole area underneath the light blue line \((\Theta_0(\leq s, c))\) including the line itself, or the whole area above it including the line itself \((\Theta_0(\geq s, c))\).

Now consider a \(\Theta_0(s, c)\) that has nonempty intersection with the interior of \([0,1]^2\) and that is separated from the point alternative \((\theta_a^*, \theta_b^*)\), i.e. \(\min(\theta_a, \theta_b) \in \Theta_0 \) \(KL(\theta_a, \theta_b) > 0\). Simple differentiation gives that the minimum is achieved by the unique \((\theta_a^*, \theta_b^*) \in \Theta_0\) satisfying:

\[
n_a \left(- \frac{\theta_a^*}{\theta_a^*} + 1 - \frac{\theta_a^*}{\theta_a^*} \right) + n_b \cdot c \cdot \left(- \frac{\theta_b^*}{\theta_b^*} + 1 - \frac{\theta_b^*}{\theta_b^*} \right) = 0,
\]

which can now be plugged into the \(E\)-variable \((7.6)\) if the alternative is the simple alternative, or otherwise into its sequential form \((7.7)\). In the basic case in which \(\Theta_0 = \{(\theta_a, \theta_b) \in [0,1]^2 : \theta_a = \theta_b\}\), the solution to \((7.8)\) reduces to the familiar \(\theta_a^* = \theta_b^* = n_a \theta_a^* + n_b \theta_b^*/n\).

If \((\theta_a^*, \theta_b^*)\) lies above the line \(\Theta_0(s, c)\), then by Theorem 3, \(\min(\theta_a, \theta_b, \theta_c) \in \Theta_0(s, c) \) \(KL(\theta_a, \theta_b)\) must lie on \(\Theta_0(s, c)\). Theorem 3 then gives that it must be achieved by the \((\theta_a^*, \theta_b^*)\) satisfying \((7.8)\). Similarly, if \((\theta_a^*, \theta_b^*)\) lies below the line \(\Theta_0(s, c)\), then \(\min(\theta_a, \theta_b, \theta_c) \in \Theta_0(s, c) \) \(KL(\theta_a, \theta_b)\) is again achieved by the \((\theta_a^*, \theta_b^*)\) satisfying \((7.8)\).
7.3 Always-Valid Confidence Sequences for the 2×2 case

Θ_0 with log odds ratio boundary Similarly, we can consider $\Theta_0(\delta), \Theta_0(\leq \delta), \Theta_0(\geq \delta)$ that correspond to a given log odds effect size δ. That is, we now take

$$
\Theta_0(\delta) := \left\{ (\theta_a, \theta_b) \in [0, 1]^2 : \log \frac{\theta_b(1 - \theta_a)}{(1 - \theta_b)\theta_a} = \delta \right\}
$$

$$
\Theta_0(\leq \delta) := \left\{ (\theta_a, \theta_b) \in [0, 1]^2 : \log \frac{\theta_b(1 - \theta_a)}{(1 - \theta_b)\theta_a} \leq \delta \right\}
$$

$$
\Theta_0(\geq \delta) := \left\{ (\theta_a, \theta_b) \in [0, 1]^2 : \log \frac{\theta_b(1 - \theta_a)}{(1 - \theta_b)\theta_a} \geq \delta \right\}.
$$

For example, whereas in Figure 1(b), Θ_0 was taken to be the diagonal, we could now also take $\Theta_0 = \Theta_0(\leq \delta)$ to be the area under the light blue curve (including the light blue curve boundary itself), which would correspond to $\delta = 2$.

Now let δ and point alternative (θ^*_a, θ^*_b) be such that $\delta > 0$ and $\Theta_0(\leq \delta)$ is separated from (θ^*_a, θ^*_b), i.e. $\min_{(\theta_a, \theta_b) \in \Theta_0(\leq \delta)} \text{KL}(\theta_a, \theta_b) > 0$. Let $(\theta^*_a, \theta^*_b) := \text{arg min}_{(\theta_a, \theta_b) \in \Theta_0(\leq \delta)} \text{KL}(\theta_a, \theta_b)$. As Figure 1(b) suggests, $\Theta_0(\leq \delta)$ is convex. Theorem 3 now tells us that $\min_{(\theta_a, \theta_b) \in \Theta_0(\leq \delta)} \text{KL}(\theta_a, \theta_b)$ is achieved by (θ^*_a, θ^*_b). Plugging these into (7.6) thus gives us an E-variable. (θ^*_a, θ^*_b) can easily be determined numerically. Similarly, if $\delta < 0$, $\Theta_0(\geq \delta)$ is convex and closed and if (θ^*_a, θ^*_b) is separated from $\Theta_0(\geq \delta)$, the (θ^*_a, θ^*_b) minimizing KL divergence on $\Theta_0(\delta)$ gives an E-variable relative to $\Theta_0(\geq \delta)$.

7.3 Always-Valid Confidence Sequences for the 2×2 case

Let $\delta = \delta(\theta_a, \theta_b)$ be a notion of effect size as before. A $(1 - \alpha)$-always-valid (AV) confidence sequence [Darling and Robbins 1967, Howard et al. 2021, Manole and Ramdas 2021] is a sequence of random (i.e. determined by data) subsets $\text{CS}_{\alpha(1)}, \text{CS}_{\alpha(2)}, \ldots$ of Γ, with $\text{CS}_{\alpha(m)}$ being a function of the first m data blocks $Y^{(m)}$, such that for all $(\theta_a, \theta_b) \in [0, 1]^2$,

$$
P_{\theta_a, \theta_b}(\exists m \in \mathbb{N} : \delta(\theta_a, \theta_b) \notin \text{CS}_{\alpha(m)}) \leq \alpha.
$$

We first consider the case in which for all values $\gamma \in \Gamma$ that δ can take, $\Theta_0(\gamma) := \{(\theta_a, \theta_b) \in [0, 1]^2 : \delta(\theta_a, \theta_b) = \gamma\}$ is a convex set. Fix a prior W_1 on $[0, 1]^2$. Based on (7.7) we can make an exact (nonasymptotic) AV confidence sequence

$$
\text{CS}_{\alpha(m)} := \left\{ \delta : S_{\alpha, m, W_1; \Theta_0(\delta)}^{(m)} \leq \frac{1}{\alpha} \right\}.
$$

where $S_{\alpha, m, W_1; \Theta_0(\delta)}^{(m)}$ is defined as in (3.5) and is a valid E-variable by Theorem 3. To see that $(\text{CS}_{\alpha(m)})_{m \in \mathbb{N}}$ really is an AV confidence sequence, note that, by definition of the $\text{CS}_{\alpha(m)}$,

$$
P_{\theta_a, \theta_b}(\exists m \in \mathbb{N} : \delta(\theta_a, \theta_b) \notin \text{CS}_{\alpha(m)}) = P_{\theta_a, \theta_b}(\exists m \in \mathbb{N} : S_{\alpha, m, W_1; \Theta_0(\delta)}^{(m)} \leq \frac{1}{\alpha}) \leq \alpha,
$$

by Ville’s inequality. Here the $\text{CS}_{\alpha(m)}$ are not necessarily intervals, but we can make a potentially larger AV confidence sequence consisting of intervals by defining $\text{CI}_{\alpha(m)}$
7.3 Always-Valid Confidence Sequences for the 2×2 case

to be the smallest interval containing $\text{CI}_{\alpha,m}$. We can turn the confidence sequences $(CS_{\alpha,(m)})_{m \in \mathbb{N}}$ into an alternative AV confidence sequence with sets $CS'_{\alpha,(m)}$ that are always a subset of $CS_{\alpha,(m)}$ by taking the running intersection

$$CS'_{\alpha,(m)} := \bigcap_{j=1..m} CS_{\alpha,(j)}.$$

In this form, the confidence sequences $CS'_{\alpha,(m)}$ can be interpreted as the set of δ’s that have not yet been rejected in a setting in which, for each null hypothesis $\Theta_0(\delta)$ we stop and reject as soon as the corresponding E-variable exceeds $1/\alpha$. The running intersection can of course also be applied to the intervals $(\text{CI}_{\alpha,(m)})_{m \in \mathbb{N}}$.

This treatment for linear Θ_0 allows us to deal with both relative-risk and absolute difference effect sizes. Let us illustrate the notion for the latter. Experiments show that $\text{CI}_{\alpha,(m)}$ is an interval, corresponding to the ‘beam’ of $(\theta_a, \theta_b) \in [0,1]^2$ bounded by the lines $\theta_b = \theta_a + \delta_L$ and $\theta_b = \theta_a + \delta_R$ with $\delta_L > \delta_R$ being values such that $S_{\{n_a,n_b,W_1;\Theta_0(\delta_b)\}}^{(m)} = S_{\{n_a,n_b,W_1;\Theta_0(\delta_b)\}} = 1/\alpha$. To simplify calculations, it is useful to take W_1 a prior under which θ_a and θ_b have independent beta distributions with parameters $a_\alpha, \beta_\alpha, a_\delta, \beta_\delta$. We can, if we want, infuse some prior knowledge or hopes by setting these parameters to certain values — our confidence sequences will be valid irrespective of our choice. In case no such knowledge can be formulated, we advocate the prior, which, among all priors that are AV confidence sequences will be valid irrespective of our choice. In case $n_a = n_b = 1$ we set W_1 to an independent beta prior on θ_a and θ_b with $\gamma = 0.18$ as was empirically found to be the ‘best’ value in Section 5.2.

Log Odds Ratio Effect Size The situation is slightly trickier if we take the log odds ratio as effect size, for $\Theta_0(\delta)$ is then not convex. Without convexity, Theorem 3 cannot be used and hence the validity of AV confidence sequences as constructed above breaks down. We can get nonasymptotic always-valid confidence sequences after all as follows.

First, we consider a one-sided AV confidence sequence for the submodel of positive effect sizes $\{ (\theta_a, \theta_b) : \delta(\theta_a, \theta_b) \leq 0 \}$, defining

$$CS^+_{\alpha,(m)} = \{ \delta \geq 0 : S_{\{n_a,n_b,W_1;\Theta_0(\delta)\}}^{(m)} \leq \alpha^{-1} \},$$

where we note that $\Theta_0(\leq \delta)$ is convex (since $\delta \geq 0$) and also contains (θ_a, θ_b) with $\delta(\theta_a, \theta_b) < 0$. Analogously, we consider a one-sided AV confidence sequence for the submodel $\{ (\theta_a, \theta_b) : \delta(\theta_a, \theta_b) \leq 0 \}$, defining

$$CS^-_{\alpha,(m)} = \{ \delta \leq 0 : S_{\{n_a,n_b,W_1;\Theta_0(\delta)\}}^{(m)} \leq \alpha^{-1} \}.$$

By Theorem 3, both sequences $(CS^+_{\alpha,(m)})_{m=1,2,...}$ and $(CS^-_{\alpha,(m)})_{m=1,2,...}$ are AV confidence sequences for the submodels with $\delta \geq 0$ and $\delta \leq 0$ respectively. Defining $CS_{\alpha,(m)} = CS^+_{\alpha,(m)} \cup CS^-_{\alpha,(m)}$, we find, for (θ_a, θ_b) with $\delta(\theta_a, \theta_b) > 0$,

$$P_{\theta_a,\theta_b} \left(\exists m \in \mathbb{N} : \delta(\theta_a, \theta_b) \not\in CS_{\alpha,(m)} \right) = P_{\theta_a,\theta_b} \left(\exists m \in N : \delta(\theta_a, \theta_b) \not\in CS^+_{\alpha,(m)} \right) \leq \alpha,$$

31
and analogously for (θ_a, θ_b) with $\delta(\theta_a, \theta_b) < 0$. We have thus arrived at a confidence sequence that works for all δ, positive or negative. In practice, the confidence sets $CS_{(m)}$ we get at time m have a one-sided shape such as the green region in Figure 1(b), if the ML estimate based on $Y^{(m)}$ lies in the upper left corner, or the light-blue region, if the ML parameters lie in the lower right corner. Again, we can improve these confidence sequences by taking the running intersection.

8 Conclusion

We have established E-variables and test martingales for the general two-i.i.d.-data streams problem. We have demonstrated, using theory, simulations and a real-world example that, for tests of two proportions, by choosing an appropriate prior on Θ_1, the method can be made competitive with classical methods that do not allow for optional stopping. We have also extended the method for null hypotheses beyond $\theta_a = \theta_b$ and used these extensions to create AV confidence sequences for the 2×2 case. Two open problems suggest themselves for future work: first, it has long been known from the MDL literature, that with simple null hypothesis, the prior achieving minimax regret for large m, corresponding to the prior which achieves optimal relative growth if H_1 is true in our setting, coincides with Jeffreys’ prior (see Example 3). For the 2×2 case with composite null, we find that the asymptotically best (among all beta priors, not necessarily all general priors) prior in the relative growth sense has hyperparameters ≈ 0.18, which we couldn’t match to Jeffreys prior. Is it possible to do a formal analysis in the style of Clarke and Barron [1994] to determine this asymptotically optimal prior? The second question is simpler: to what extent do our findings generalize to logistic regression?

Acknowledgements This work is part of the Enabling Personalized Interventions (EPI) project, which is supported by the Dutch Research Council (NWO) in the Commit2 - Data –Data2Person program under contract 628.011.028. We thank Reuben Adams, Rianne de Heide, Wouter Koolen, Muriel Perez and Judith ter Schure for useful conversations and in particular Adams and De Heide for performing experiments that inspired the E-variables presented here.

References

A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding
REFERENCES

REFERENCES

Appendices

Appendix A Proofs

A.1 Proof of Propositions

Proof of Proposition 3 We will actually prove Proposition 3 below, a generalization of Proposition 1 that will be useful as a tool to prove the ensuing theorems. Here we use the notation adopted later in the paper: for \(H_0 = \{ P_\theta : \theta \in \Theta_0 \} \) and, for \(W \) a distribution on \(\Theta_0 \), we write \(P_W = \int P_\theta dW(\theta) \).

Proposition 3. Let \(H_1 = \{ Q \} \) be a singleton and let \(H_0 = \{ P_\theta : \theta \in \Theta_0 \} \). Define \(S_{\theta,(j)} := q(Y_{(j)})/p_\theta(Y_{(j)}) \) and \(S_{W,(j)} := q(Y_{(j)})/p_W(Y_{(j)}) \). Suppose there exists a distribution \(W \) on \(\Theta_0 \) with finite support such that \(S_{W,(1)} \) is an \(E \)-variable. Then:

1. \(S_{W,(1)} \) is the \(Q \)-GRO \(E \)-variable for \(Y_{(1)} \).

2. A valid \(E \)-variable of this form, with \(W \) putting mass 1 on a single \(\theta^* \in \Theta_0 \) so that \(S_{W,(1)} = S_{\theta^*,(1)} \), automatically exists if \(H_0 \) is a convex set of distributions that is compact in the weak topology.

3. If, for some \(\theta^* \in \Theta_0 \), \(S_{\theta^*,(1)} \) is an \(E \)-variable and we further assume that \(Y_{(1)}, Y_{(2)}, \ldots \) are i.i.d. according to all distributions in \(H_0 \cup H_1 \), then \(S_{\text{GRO}(Q)} = \prod_{j=1}^{m} S_{\theta^*,(j)} \), i.e. the \(Q \)-GRO optimal (unconditional) \(E \)-variable for \(Y^{(m)} \) is the product of the individual \(Q \)-GRO optimal \(E \)-variables.
Proof. Part 1 [Grünwald et al., 2019, Theorem 1] implies, for each \(m \geq 1 \), that (a) there can be at most one distribution \(W \) such that \(S_{W(1)} \) is an \(\mathcal{E} \)-variable, and (b), if such a \(W \) exists, then \(S_{W(1)} \) must be the \(Q \)-GRO \(\mathcal{E} \)-variable for \(Y(1) \). This implies the statement.

Part 2 Assume \(\mathcal{H}_0 \) is convex. Then for every distribution \(W \) on \(\Theta_0 \) with finite support, we must have \(S_{W(1)} = S_{\theta(1)} \) for some \(\theta \in \Theta_0 \) such that \(p_\theta = \sum_{k=1}^{K} w(\theta_k)p_{\theta_k} \) where \(\{\theta_1, \ldots, \theta_k\} \) is the support of \(W \) and \(w \) is the corresponding probability mass function.

Let \(D(Q(Y(1))\|P_\theta(Y(1))) \) be the KL divergence between the marginal distributions for \(Y(1) \) according to \(Q \) and \(P_\theta \). We claim that there exists \(\theta^* \in \Theta_0 \) such that

\[
D(Q(Y(1))\|P_{\theta^*}(Y(1))) = \inf_{\theta \in \Theta_0} D(Q(Y(1))\|P_\theta(Y(1))) = \inf_W D(Q(Y(1))\|P_W(Y(1))), \tag{A.1}
\]

where the second infimum is over all distributions \(W \) with finite support. Here the first equality (stating that the minimum is achieved) follows from Posner [1975] who showed that the KL divergence is lower semi-continuous in its second argument, together with compactness of \(\mathcal{H}_0 \). The second equality follows by convexity of \(\mathcal{H}_0 \). But (A.1) expresses that \(P_{\theta^*} \) is the reverse information projection (RIPr) [Li, 1999, Li and Barron, 2000] of \(Q \) onto the convex hull of \(\mathcal{H}_0 \) (restricted to single outcomes \(Y(1) \)). [Grünwald et al., 2019] then immediately gives that \(q(Y(1))/p_{\theta^*}(Y(1)) \) is an \(\mathcal{E} \)-variable.

Part 3 The assumption implies that \(S_{\theta^*(1)} \) is an \(\mathcal{E} \)-variable. Moreover, the i.i.d. assumption implies that \(S_{\theta^*(m)} := \prod_{j=1}^{m} S_{\theta^*(j)} = \prod q(Y(j))/p_{\theta^*}(Y(j)) \) is also an \(\mathcal{E} \)-variable. But Grünwald et al. [2019, Theorem 1] implies, for \(\mathcal{H}_0 \) for which data are i.i.d., for each \(m \geq 1 \), that (a) if a \(\theta \in \Theta_0 \) exists such that \(S_{\theta}(m) \) is an \(\mathcal{E} \)-variable, then \(S_{\theta}(m) \) must be the \(Q \)-GRO \(\mathcal{E} \)-variable for \(Y(m) \). This proves the statement. \(\square \)

Proof of Proposition 2 The formulae for \(\tilde{\theta}_a|Y(j-1) \) and \(\tilde{\theta}_b|Y(j-1) \) are standard expressions for the Bayes predictive distribution based on the given beta priors; we omit further details. As to the expression for \(\tilde{\theta}_0|Y(j-1) \) in terms of \(\gamma = \frac{2n_{(j-1)}}{n_{(j-1)}+\beta_a} \), straightforward rewriting gives, for general \(\alpha_a, \alpha_b, \beta_a, \beta_b \):

\[
\tilde{\theta}_0|Y(j-1) = \frac{1}{1+\gamma} \tilde{\theta}_a|Y(j-1) + \frac{\gamma}{1+\gamma} \tilde{\theta}_b|Y(j-1).
\]

If we plug in the expressions for \(\tilde{\theta}_a|Y(j-1) \) and \(\tilde{\theta}_b|Y(j-1) \) and we instantiate to \(\alpha_b = \gamma \alpha_a \), and \(\beta_b = \gamma \beta_a \), this becomes

\[
\tilde{\theta}_0|Y(j-1) = \frac{1}{1+\gamma} \frac{U_a + \alpha_a}{n_a(j-1) + \alpha_a + \beta_a} + \frac{\gamma}{1+\gamma} \frac{U_b + \alpha_b}{n_a(j-1) + \alpha_a + \beta_b} = \frac{U + (1+\gamma)\alpha_a}{n(j-1) + (1+\gamma)\alpha_a + (1+\gamma)\beta_a},
\]

which is what we had to prove.
A.2 Proof of Theorem 1 and 2

The following fact plays a central role in both proofs:

Fact Let $n_a, n_b \in \mathbb{N}, n := n_a + n_b$ and let $u, v \in \mathbb{R}^+$. Suppose that $n_a u + n_b v \leq n$. Then $u^{n_a} v^{n_b} \leq 1$.

This result follows immediately from applying Young’s inequality to $u^{n_a/n} v^{n_b/n}$ but can also be derived directly by writing v as function of u and differentiating $\log(u^{n_a} v^{n_b})$ to u.

Proof of Theorem 1

Part 1 For $y \in \mathcal{Y}$, set $p^b(y) := (n_a/n)p_{\theta_a}(y) + (n_b/n)p_{\theta_b}(y)$.

For all $\theta \in \Theta$ we have:

$$
E_{Y \sim P_{\theta}} \left[s(V^n; n_a, n_b, \theta^a, \theta^b) \right] = E_{Y \sim P_{\theta}} \left[\frac{p_{\theta_a}(Y_n)}{p^a(Y_n)} \right] \cdot E_{Y \sim P_{\theta}} \left[\frac{p_{\theta_b}(Y_n)}{p^b(Y_n)} \right] = \left(E_{Y \sim P_{\theta_a}} \left[\frac{p_{\theta_a}(Y)}{p^a(Y)} \right] \right)^{n_a} \cdot \left(E_{Y \sim P_{\theta_b}} \left[\frac{p_{\theta_b}(Y)}{p^b(Y)} \right] \right)^{n_b}.
$$

(A.2)

We also have

$$
\frac{n_a}{n} E_{Y \sim P_{\theta}} \left[\frac{p_{\theta_a}(Y)}{p^a(Y)} \right] + \frac{n_b}{n} E_{Y \sim P_{\theta}} \left[\frac{p_{\theta_b}(Y)}{p^b(Y)} \right] = E_{Y \sim P_{\theta}} \left[\frac{n_a}{n} \cdot \frac{p_{\theta_a}(Y)}{\frac{n_a}{n} p_{\theta_a}(Y) + \frac{n_b}{n} p_{\theta_b}(Y)} + \frac{n_b}{n} \cdot \frac{p_{\theta_b}(Y)}{\frac{n_a}{n} p_{\theta_a}(Y) + \frac{n_b}{n} p_{\theta_b}(Y)} \right] = 1.
$$

(A.3)

The result now follows by combining (A.2) with (A.3) using the Fact further above.

Part 2 By convexity of $\{P_\theta : \theta \in \Theta\}$, there exists $\theta^* \in \Theta$ such that $p_{\theta^*} = (n_a/n)p_{\theta_a} + (n_b/n)p_{\theta_b}$ and then the numerator in (2.2) can we rewritten as $p_{\theta^*}(y_n^a, y_n^b)$. The GRO-property is an immediate consequence of Proposition 3 Part 3.

Proof of Theorem 2

Part 1 The real idea behind the proof is the formulation of the modified testing problem in which only a single outcome per block is observed. This we already did in the main text. Linking the two is simply the last, very simple step, with analogies to the proof of Part 1 of Theorem 1 by independence, for $(\theta_a, \theta_b) \in \Theta_0$.

$$
E_{Y \sim P_{\theta_a}, Y \sim P_{\theta_b}} \left[s'(Y_n^a, Y_n^b) \right] = \\
E_{Y \sim P_{\theta_a}} \left[\frac{p_{\theta_a}(Y_n^a)}{p^a(Y_n^a)} \right] \cdot E_{Y \sim P_{\theta_b}} \left[\frac{p_{\theta_b}(Y_n^b)}{p^b(Y_n^b)} \right] = \\
\left(E_{Y \sim P_{\theta_a}} \left[\frac{p_{\theta_a}(Y)}{p^a(Y)} \right] \right)^{n_a} \cdot \left(E_{Y \sim P_{\theta_b}} \left[\frac{p_{\theta_b}(Y)}{p^b(Y)} \right] \right)^{n_b}.
$$

37
Using the Fact above, (7.3) implies that the latter quantity is bounded by 1.

Part 2 The result is an immediate consequence of Proposition 3 Part 2.

Proof of Theorem 3 We set $kl'(\theta_a, \theta_b) := D(P'_{\theta_a, \theta_b} || P'_{\theta' a, \theta'b})$ where D is the KL divergence as in (7.2), i.e. for the modified setting in which P'_{θ_a, θ_b} is a distribution on a single outcome, as discussed before Theorem 2. For the 2×2 model this KL divergence can be written explicitly as

$$D(P'_{\theta_a, \theta_b} || P'_{\theta_a, \theta_b}) = \frac{n_a}{n} \sum_{y_a \in \{0, 1\}} p_{\theta_a}(y_a) \log \frac{p_{\theta'_a}(y_a)}{p_{\theta_a}(y_a)} + \frac{n_b}{n} \sum_{y_b \in \{0, 1\}} p_{\theta_b}(y_b) \log \frac{p_{\theta'_b}(y_b)}{p_{\theta_b}(y_b)}$$

(A.4)

From (7.5) we now see that $nKL'(\theta_a, \theta_b) = KL(\theta_a, \theta_b)$. We will prove the theorem with KL replaced by KL' and H_0 by H_0'; since the two KL’s agree up to a constant factor of n, all results transfer to the KL mentioned in the theorem statement.

Since Θ_0 is compact in the Euclidean topology and all distributions in H_0' can be represented as 2-dimensional vectors, i.e. they have common and finite support, we must have that H_0 is compact in the weak topology so we can apply Posner’s theorem as in the proof of Proposition 3 Part 2, to give us that the minimum $KL'(\theta_a, \theta_b)$ is achieved by some (θ_a^*, θ_b^*). Since KL divergence is strictly convex in its second argument and H_0' is convex (this is the place where we need to use KL' rather than KL: H_0 may not be convex!), the minimum must be achieved uniquely. Since KL divergence $KL'(\theta_a, \theta_b)$ is nonnegative and 0 only if $(\theta_a, \theta_b) = (\theta_a^*, \theta_b^*)$, it follows that $(\theta_a^*, \theta_b^*) = (\theta_a^*, \theta_b^*)$ if $min KL(\theta_a, \theta_b) = 0$. Otherwise, we assume (θ_a^*, θ_b^*) to be in the interior of $[0, 1]^2$. $KL(\theta_a, \theta_b) = \infty$ iff (θ_a, θ_b) lies on the boundary of $[0, 1]^2$. Thus, (θ_a^*, θ_b^*) must lie in the interior of $[0, 1]^2$ as well. (θ_a^*, θ_b^*) cannot lie in the interior of Θ_0 though: for any point (θ_a, θ_b) in the interior of Θ_0 we can draw a line segment between this point and (θ_a^*, θ_b^*). Differentiation along that line gives that $KL(\theta_a, \theta_b)$ monotonically decreases as we move towards (θ_a^*, θ_b^*), so the minimum within the closed set Θ_0 must lie on its boundary.

It remains to show that (7.6) is the (θ_a^*, θ_b^*)-GRO E-variable relative to H_0. To see this, note that, by convexity of H_0', from Proposition 3 Part 2, the p^o appearing in (7.4) (which is the reverse information projection of P'_{θ_a, θ_b} onto $H_0' = H_0'$) is equal to $p^{o\theta}$. The result then follows by Theorem 2.

Appendix B Numerical approach to calculating E-variables for restricted H_1

In this subsection we describe how we propose to approximate the beta prior and posterior on the restricted H_1 with parameter space $\Theta(\delta)$, as defined in (4.1). Note that we limit ourselves to $\delta > 0$ in this detailed description; for $\delta < 0$ one can apply an
entirely equivalent approach, with an extra term in the reparameterization. We define
\[
\zeta = \begin{cases}
\delta & \text{if } d((\theta_a, \theta_b)) = \theta_b - \theta_a, \\
0 & \text{if } d((\theta_a, \theta_b)) = 10R((\theta_a, \theta_b)),
\end{cases}
\tag{B.1}
\]
such that we have have \(\theta_a \in (0, 1 - \zeta)\) and in both cases, \(\theta_b\) is completely determined by \(\theta_a\):
\(\theta_b = d^{-1}(\delta; \theta_a)\). Hence, our density estimation problem now becomes one-dimensional, which enables us to put a discretized prior on the restricted parameter space.

First, we discretize the parameter space \(\Theta_a\) to a grid (a vector) with precision \(K, K \in (0, 1 - \zeta)\) and \(\frac{1}{K} \in \mathbb{N}^+\): \(\tilde{\theta}_a = (K, 2K, 3K, \ldots, 1 - \zeta)\). Then, we reparameterize \(\theta_a = (1 - \zeta) \rho\), with \(\rho \in (0, 1)\). Then, we have \(\tilde{\rho} = \left(\frac{K}{1 - \zeta}, \frac{2K}{1 - \zeta}, \ldots, 1\right)\). For the discretized grid \(\tilde{\rho}\), we compute the prior \(W = \text{Beta}(\alpha, \beta)\) densities and normalize them, which also gives us the discretized densities for each \(\tilde{\theta}_a^i \in \tilde{\theta}_a\) (with \(i \in \{1, 2, \ldots, \frac{1}{K}\}\)):
\[
\pi_{\alpha, \beta, \zeta}(\tilde{\theta}_a^i) = \frac{\text{Beta}(\tilde{\theta}_a^i; \alpha, \beta)}{\sum_{k=1}^{1/K} \text{Beta}(\tilde{\theta}_a^k; \alpha, \beta)}.
\]

For all elements of \(\tilde{\theta}_a\), the corresponding \(\theta_b\) is retrieved and the likelihood of incoming data points \(p_{\theta_a, \theta_b}(Y^{(j-1)})\) is calculated. We can then estimate the posterior density of \(\theta_a \in \tilde{\theta}_a\):
\[
p(\theta_a^i|Y^{(j-1)}) = \frac{\pi_{\alpha, \beta, \zeta}(\tilde{\theta}_a^i)p_{\theta_a}(Y^{(j-1)})}{\sum_{k=1}^{1/K} \pi_{\alpha, \beta, \zeta}(\tilde{\theta}_a^k)p_{\theta_a^k}(Y^{(j-1)})}.
\]

We can then estimate \(\tilde{\theta}_a|Y^{(j-1)} = \mathbb{E}_{\theta_a \sim W|Y^{(j-1)}[\theta_a]}\) as \(\sum_{i=1}^{K} p(\theta_a^i|Y^{(j-1)})\theta_a^i\), and \(\tilde{\theta}_b|Y^{(j-1)} = d^{-1}(\delta; \theta_a|Y^{(j-1)})\).

Appendix C The Gunel-Dickey Bayes Factors do not give rise to \(E\)-variables

<table>
<thead>
<tr>
<th>Sampling scheme</th>
<th>Fixed parameters</th>
<th>Bayes factor (10) for 2x2 table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>none</td>
<td>(8(n+1)(n+1))</td>
</tr>
<tr>
<td>Joint multinomial</td>
<td>(n)</td>
<td>(6(n+1)(n+1))</td>
</tr>
<tr>
<td>Independent multinomial</td>
<td>(n_a, n_b)</td>
<td>(n_a(n_a+1)(n_b+1))</td>
</tr>
<tr>
<td>Hypergeometric</td>
<td>(n_a, n_b, n_1)</td>
<td>(n_a(n_a+1)(n_b+1)(n_1+1))</td>
</tr>
</tbody>
</table>

Table 1: Overview of (objective) Bayes factors for contingency table testing provided by Gunel and Dickey [1974] and Jamil et al. [2017].
We will not consider the hypergeometric and joint multinomial scenarios for this paper, where the number of successes n_1 is fixed, as they do not match the block-wise data design in this paper. The Bayes factor for the Poisson sampling scheme is not an E-variable, as the expectation under the null hypothesis with Poisson distributions on individual cell counts exceeds 1 for rates $\lambda \geq 1$:

$$E_{n_{rc} \sim \text{Poisson}(\lambda_{rc})} [BF_{10}(N_{a1}, N_{b1}, N_{a0}, N_{b0})] =$$

$$\sum_{n_{a1}=0}^{\infty} \ldots \sum_{n_{b0}=0}^{\infty} \sum_{n_{a1}} \pi_{\lambda_{a1}} (n_{a1}) \ldots \pi_{\lambda_{b0}} (n_{b0}) BF_{10}(n_{a1}, n_{b1}, n_{a0}, n_{b0}) =$$

$$\frac{8}{e^{\lambda_{a1} + \ldots + \lambda_{b0}}} \sum_{n_{a1}=0}^{\infty} \ldots \sum_{n_{b0}=0}^{\infty} \lambda_{a1}^{n_{a1}} \ldots \lambda_{b0}^{n_{b0}} \frac{(n+1)(n_1+1)}{(n+4)(n+2)} \frac{n!}{(n_1+1)!n_0!n_a!n_b!},$$

as illustrated numerically in Figure 7 for increasing limits for the sums $\sum_{n_{rc}=1}^{\infty}$.

![Figure 7: The Gunel-Dickey Bayes factor for the Poisson sampling scheme is not an E-variable: $\sum_{n_{rc}=1}^{\infty} \ldots \sum_{n_{rc}=1}^{\infty} \pi_{\lambda_{a1}} (n_{a1}) \ldots \pi_{\lambda_{b0}} (n_{b0}) BF_{10}(n_{a1}, n_{b1}, n_{a0}, n_{b0})$ for various $\max n_{rc}$ and λ_{rc}.](image)

For the independent multinomial sampling scheme, let, without loss of generality, $n_a < n_b$. We get, with $n_0 = n - n_1$,

$$E_{N_{a1}, N_{b1} \sim \text{Binomial}(\theta)} [BF_{10}(N_{a1}, N_{b1} | n_a, n_b)] =$$

$$\sum_{n_{a1}=0}^{n_a} \sum_{n_{b1}=0}^{n_b} \binom{n_a}{n_{a1}} \binom{n_b}{n_{b1}} \theta^{n_{a1}} (1 - \theta)^{n_0} \frac{n}{n_{a1}} \frac{(n_{a1} + 1)(n_{b1} + 1)}{(n_{a1} + 1)(n_{b1} + 1)} =$$

$$\frac{(n+1)}{(n_a+1)(n_b+1)} \sum_{n_{a1}=0}^{n_a} \sum_{n_{b1}=0}^{n_b} \binom{n}{n_{a1}} \binom{n_{b1}}{(n_{a1}+1)(n_{b1}+1)} \theta^{n_{a1}} (1 - \theta)^{n_0}$$
Numerical simulations show that, for a range of choices for n, n_a and θ this exceeds 1; see Figure 8.

Figure 8: The Gunel-Dickey Bayes factor for the independent multinominal sampling scheme is not an E-variable: $E_{N_{a1},N_{b1}\sim\text{Binomial}(\theta)}[BF_{10}(N_{a1},N_{b1}|n_a,n_b)]$ for various choices of θ and n_g.